The influence of particle size and structure on the sorption and oxidation behaviour of birnessite: II. Adsorption and oxidation of four polycyclic aromatic hydrocarbons
Mario Villalobos A C , Manuel Carrillo-Cárdenas A , Richard Gibson B , N. Ruth López-Santiago B and Jimmy A. Morales AA Geochemistry Department, Bio-Geochemistry Group, Geology Institute, Universidad Nacional Autónoma de México (UNAM), Coyoacán, D.F. 04510, Mexico.
B Bio-Geochemistry Group, Chemistry School, Universidad Nacional Autónoma de México (UNAM), Coyoacán, D.F. 04510, Mexico.
C Corresponding author. Email: mar.villa@stanfordalumni.org
Environmental Chemistry 11(3) 279-288 https://doi.org/10.1071/EN13161
Submitted: 22 August 2013 Accepted: 11 January 2014 Published: 11 April 2014
Environmental context. Sorption and oxidation reactions at mineral surfaces can substantially influence the mobility and toxicity of environmental contaminants. An understanding of the factors that control these reactions is crucial for predicting the fate of contaminant species. We investigate the reactivity of manganese oxides towards polycyclic aromatic hydrocarbons, persistent organic compounds of environmental concern.
Abstract. Birnessites are ubiquitous components of natural systems and may exert a significant influence on the mobility and toxicity of different types of contaminants, including organic species. Their small particle sizes and internal structure provide them with high sorption capacities and oxidising abilities for redox sensitive species. In the present work, the interactions of two MnIV birnessites (δ-MnO2 and acid birnessite) of different particle sizes and layer vacancy contents were investigated with four hydrophobic polycyclic aromatic hydrocarbons (PAHs) of three and four rings. Fluorene and anthracene were oxidised to produce the corresponding and less toxic quinones by both birnessites, but at a higher rate and extent by δ-MnO2. Phenanthrene and fluoranthene only adsorbed to δ-MnO2 but not to acid birnessite. The higher reactivity of δ-MnO2 is only partly explained by its higher specific surface area (114 v. 39 m2 g–1), i.e. by its smaller particle size. The repulsive effect of water molecules from hydrated cations sorbed on layer vacant sites is most likely decisive, because acid birnessite shows a considerably larger content of these vacancies. The results presented provide a fundamental understanding of the potential influence of birnessite minerals on the attenuation of low molecular weight PAHs in environments with low organic matter content, such as deep aquifers.
References
[1] L. H. Keith, W. A. Telliard, Priority pollutants. Environ. Sci. Technol. 1979, 13, 416.| Priority pollutants.Crossref | GoogleScholarGoogle Scholar |
[2] Electronic Code of Federal Regulations (e-CFR), Appendix A to Part 423—126 Priority Pollutants 2014 (US Government). Available at http://www.ecfr.gov/cgi-bin/text-idx?SID=8772ee6c485ea92170b140c630aa959f&node=40:30.0.1.1.23&rgn=div5#40:30.0.1.1.23.0.5.9.9 [Verified 25 March 2014].
[3] D. W. Connell, Polycyclic aromatic hydrocarbons (PAHs), in Basic Concepts of Environmental Chemistry, 2nd edn 2005, pp. 195–197 (CRC Press: Boca Raton, Fl).
[4] A. Abrajano Jr, B. Yan, V. O. O’Malley, High molecular weight petrogenic and pyrogenic hydrocarbons in aquatic environments, in Environmental Geochemistry, Vol 9. Treatise on Geochemistry (Eds H. D. Holland, K. K. Turekian) 2005, pp. 479–485 (Elsevier–Pergamon: Oxford, UK).
[5] R. Villalobos-Pietrini, O. Amador-Muñoz, S. Waliszewski, L. Hernández-Mena, Z. Munive-Colin, S. Gómez-Arroyo, J. L. Bravo-Cabrera, A. Frías-Villegas, Mutagenicity and polycyclic aromatic hydrocarbons associated with extractable organic matter from airborne particles ≤10 μm in southwest Mexico City. Atmos. Environ. 2006, 40, 5845.
| Mutagenicity and polycyclic aromatic hydrocarbons associated with extractable organic matter from airborne particles ≤10 μm in southwest Mexico City.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1yntLg%3D&md5=bf4aa9cff31c62d0d3c2a7e29ec6df95CAS |
[6] A. Abrajano Jr, B. Yan, V. O. O’Malley, High molecular weight petrogenic and pyrogenic hydrocarbons in aquatic environments, in Environmental Geochemistry, Vol 9. Treatise on Geochemistry (Eds H. D. Holland, K. K. Turekian) 2005, pp. 486–488 (Elsevier–Pergamon: Oxford, UK).
[7] A. K. Haritash, C. P. Kaushik, Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J. Hazard. Mater. 2009, 169, 1.
| Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlOqs7k%3D&md5=9627e8b671abcac082f112d532fcde84CAS | 19442441PubMed |
[8] D. L. Sparks, Inorganic soil components, in Environmental Soil Chemistry 2003, pp. 51–53 (Academic Press: San Diego, CA).
[9] B. M. Tebo, J. R. Bargar, B. G. Clement, G. J. Dick, K. J. Murray, D. Parker, R. Verity, S. M. Webb, Biogenic manganese oxides: properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci. 2004, 32, 287.
| Biogenic manganese oxides: properties and mechanisms of formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVyisro%3D&md5=cbaadec389c1d8a0be4be94f0055eaceCAS |
[10] N. Miyata, Y. Tani, M. Sakata, K. Iwahori, Microbial manganese oxide formation and interaction with toxic metal ions. J. Biosci. Bioeng. 2007, 104, 1.
| Microbial manganese oxide formation and interaction with toxic metal ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCmtrjP&md5=20a5609bc85713f807fc81c80ac656b0CAS | 17697976PubMed |
[11] M. Villalobos, B. Toner, J. Bargar, G. Sposito, Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim. Cosmochim. Acta 2003, 67, 2649.
| Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlCqt7s%3D&md5=61e7c5445b36541623fbd49f23eaecd6CAS |
[12] M. Villalobos, B. Lanson, A. Manceau, B. Toner, G. Sposito, Structural model for the biogenic Mn oxide produced by Pseudomonas putida. Am. Mineral. 2006, 91, 489.
| Structural model for the biogenic Mn oxide produced by Pseudomonas putida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVClu70%3D&md5=d768078109bd32e5d66b179d652937e6CAS |
[13] L. Zhang, J. Ma, M. Yu, The microtopography of manganese dioxide formed in situ and its adsorptive properties for organic micropollutants. Solid State Sci. 2008, 10, 148.
| The microtopography of manganese dioxide formed in situ and its adsorptive properties for organic micropollutants.Crossref | GoogleScholarGoogle Scholar |
[14] T. Hennebel, B. De Gusseme, N. Boon, W. Verstraete, Biogenic metals in advanced water treatment. Trends Biotechnol. 2009, 27, 90.
| Biogenic metals in advanced water treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlShurs%3D&md5=23a116338d011c70e241563e5b303ccaCAS | 19111361PubMed |
[15] M. Villalobos, I. N. Escobar-Quiroz, C. Salazar-Camacho, The influence of particle size and structure on the sorption and oxidation behavior of birnessite: I. Adsorption of AsV and oxidation of AsIII. Geochim. Cosmochim. Acta
[16] J.-S. Seo, Y.-S. Keum, Q. X. Li, Bacterial degradation of aromatic compounds. Int. J. Environ. Res. Public Health 2009, 6, 278.
| Bacterial degradation of aromatic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFalu7c%3D&md5=feb783de87da98a0ef3f5f90677875b9CAS | 19440284PubMed |
[17] R.-H. Peng, A.-S. Xiong, Y. Xue, X.-Y. Fu, F. Gao, W. Zhao, Y.-S. Tian, Q.-H. Yao, Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev. 2008, 32, 927.
| Microbial biodegradation of polyaromatic hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGlsbnN&md5=b837f7040423abebc263090583dee062CAS | 18662317PubMed |
[18] S. Pal, J.-M. Bollag, P. M. Huang, Role of abiotic and biotic catalysts in the transformation of phenolic compounds through oxidative coupling reactions. Soil Biol. Biochem. 1994, 26, 813.
| Role of abiotic and biotic catalysts in the transformation of phenolic compounds through oxidative coupling reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitVymtw%3D%3D&md5=07f04d1473438ad0fc80d299ac2bb5cbCAS |
[19] M. A. Rao, G. Iamarino, R. Scelza, F. Russo, L. Gianfreda, Oxidative transformation of aqueous phenolic mixtures by birnessite-mediated catalysis. Sci. Total Environ. 2008, 407, 438.
| Oxidative transformation of aqueous phenolic mixtures by birnessite-mediated catalysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWiu7fL&md5=c94e8c31c5c3702a3333d0f209aea5f1CAS | 18812250PubMed |
[20] J.-W. Jung, S. Lee, H. Ryu, K.-H. Kang, K. Nam, Detoxification of phenol through bond residue formation by birnessite in soil: transformation kinetics and toxicity. Journal of Environmental Science and Health Part A 2008a, 43, 255.
| Detoxification of phenol through bond residue formation by birnessite in soil: transformation kinetics and toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1eiuw%3D%3D&md5=b9355eef2c20e354411ee40c3cd7e3abCAS |
[21] S. W. C. Chien, H. L. Chen, M. C. Wang, K. Seshaiah, Oxidative degradation and associated mineralization of catechol, hydroquinone and resorcinol by birnessite. Chemosphere 2009, 74, 1125.
| Oxidative degradation and associated mineralization of catechol, hydroquinone and resorcinol by birnessite.Crossref | GoogleScholarGoogle Scholar |
[22] H. Zhang, C. H. Huang, Oxidative transformation of triclosan and chlorophene by manganese oxides. Environ. Sci. Technol. 2003, 37, 2421.
| Oxidative transformation of triclosan and chlorophene by manganese oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlWhs7s%3D&md5=8b8a25263ef8876ec75c8151d08c99c5CAS | 12831027PubMed |
[23] J.-W. Jung, S. Lee, H. Ryu, K. Nam, K.-H. Kang, Enhanced reactivity of hydroxylated polycyclic aromatic hydrocarbons to birnessite in soil: reaction kinetics and nonextractable residue formation. Environ. Toxicol. Chem. 2008b, 27, 1031.
| Enhanced reactivity of hydroxylated polycyclic aromatic hydrocarbons to birnessite in soil: reaction kinetics and nonextractable residue formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1ajtr4%3D&md5=45603aeeb6be2d57fd272ea58f264201CAS | 18419188PubMed |
[24] S. Lee, H. Ryu, K. Nam, Phenanthrene metabolites bound to soil organic matter by birnessite following partial biodegradation. Environ. Toxicol. Chem. 2009, 28, 946.
| Phenanthrene metabolites bound to soil organic matter by birnessite following partial biodegradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGqs7k%3D&md5=d81ec63f4a48e5aa67a5237c1127eedbCAS | 19125546PubMed |
[25] N. N. Opembe, Y. C. Son, T. Sriskandakumar, S. T. Suib, Kinetics and mechanism of 9H-fluorene oxidation catalyzed by manganese oxide octahedral molecular sieves. ChemSusChem 2008, 1, 182.
| Kinetics and mechanism of 9H-fluorene oxidation catalyzed by manganese oxide octahedral molecular sieves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFOhtL4%3D&md5=8e415405b2cb1331539ef8a1e820179aCAS | 18605202PubMed |
[26] V. R. Choudhary, K. Mantri, Adsorption of aromatic hydrocarbons on highly siliceous MCM-41. Langmuir 2000, 16, 7031.
| Adsorption of aromatic hydrocarbons on highly siliceous MCM-41.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFeqsbc%3D&md5=15c5316380b385f6e3ff2aa565a112a5CAS |
[27] R. S. Araújo, D. C. S. Azevedo, C. L. Cavalcante, A. Jiménez-López, E. Rodríguez-Castellón, Adsorption of polycyclic aromatic hydrocarbons (PAHs) from isooctane solutions by mesoporous molecular sieves: influence of the surface acidity. Micropor. Mesopor. Mater. 2008, 108, 213.
| Adsorption of polycyclic aromatic hydrocarbons (PAHs) from isooctane solutions by mesoporous molecular sieves: influence of the surface acidity.Crossref | GoogleScholarGoogle Scholar |
[28] B. T. Mader, K. Uwe-Goss, S. J. Eisenreich, Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces. Environ. Sci. Technol. 1997, 31, 1079.
| Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXit1Sns7k%3D&md5=a313844c666838f2bd8581d7b230b7ecCAS |
[29] T. B. Stauffer, W. G. MacIntyre, Sorption of low-polarity organic compounds on oxided minerals and aquifer materials. Environ. Toxicol. Chem. 1986, 5, 949.
| 1:CAS:528:DyaL2sXlsFChtw%3D%3D&md5=9fdce6294599b9ba5df9455aa7ab366dCAS |
[30] W. Huang, M. A. Schlautman, W. J. Weber, A distributed reactivity model for sorption by soils and sediments. 5. The influence of near-surface characteristics in mineral domains. Environ. Sci. Technol. 1996, 30, 2993.
| A distributed reactivity model for sorption by soils and sediments. 5. The influence of near-surface characteristics in mineral domains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xlt1eltr4%3D&md5=6a8802d6b21050c6d436689c258e8d4cCAS |
[31] S. Müller, K. U. Totsche, I. Kögel-Knabner, Sorption of polycyclic aromatic hydrocarbons to mineral surfaces. Eur. J. Soil Sci. 2007, 58, 918.
| Sorption of polycyclic aromatic hydrocarbons to mineral surfaces.Crossref | GoogleScholarGoogle Scholar |
[32] M. J. Angove, M. B. Fernandes, J. Ikhsan, The sorption of anthracene onto goethite and kaolinite in the presence of some benzene carboxylic acids. J. Colloid Interface Sci. 2002, 247, 282.
| The sorption of anthracene onto goethite and kaolinite in the presence of some benzene carboxylic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVChsbg%3D&md5=7d4ff3ca2ed025092dc6d6f8b196341eCAS | 16290467PubMed |
[33] D. Tunega, M. H. Gerzabek, G. Haberhauer, K. U. Totsche, H. Lischka, Model study on sorption of polycyclic aromatic hydrocarbons on goethite. J. Colloid Interface Sci. 2009, 330, 244.
| Model study on sorption of polycyclic aromatic hydrocarbons on goethite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVegt73F&md5=05c33e8e01c03b40cb7ad7857f5c74aeCAS | 18996540PubMed |
[34] L. L. Miller, G. D. Nordblom, E. A. Mayeda, A simple, comprehensive correlation of organic oxidation and ionization potentials. J. Org. Chem. 1972, 37, 916.
| A simple, comprehensive correlation of organic oxidation and ionization potentials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xht1Khtr0%3D&md5=21b04b8660151c47e647d47e7d9c628dCAS |
[35] K. Verschueren, Handbook of Environmental Data on Organic Chemicals, 4th edn 2001 (Wiley: New York).
[36] E. Šepič, M. Bricelj, H. Leskovšek, Toxicity of fluoranthene and its degradation metabolites to aquatic organisms. Chemosphere 2003, 52, 1125.
| Toxicity of fluoranthene and its degradation metabolites to aquatic organisms.Crossref | GoogleScholarGoogle Scholar | 12820993PubMed |
[37] X. Hu, P. Wang, H.-M. Hwang, Oxidation of anthracene by immobilized laccase from Trametes versicolor. Bioresour. Technol. 2009, 100, 4963.
| Oxidation of anthracene by immobilized laccase from Trametes versicolor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslGht70%3D&md5=47ade4324c09e7c211dd7c3c454615afCAS | 19564104PubMed |
[38] J. Choi, J. T. Oris, Assessment of the toxicity of anthracene photo-modification products using the topminnow (Poeciliopsis lucida) hepatoma cell line (PLHC-1). Aquat. Toxicol. 2003, 65, 243.
| Assessment of the toxicity of anthracene photo-modification products using the topminnow (Poeciliopsis lucida) hepatoma cell line (PLHC-1).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1yqt7g%3D&md5=bd704a1487044ee522972cb58dcf8773CAS | 13678844PubMed |
[39] A. Brückner, M. Baerns, Selective gas-phase oxidation of polycyclic aromatic hydrocarbons on vanadium oxide-based catalysts. Appl. Catal. A Gen. 1997, 157, 311.
| Selective gas-phase oxidation of polycyclic aromatic hydrocarbons on vanadium oxide-based catalysts.Crossref | GoogleScholarGoogle Scholar |
[40] A. Streitwieser Jr, C. H. Heathcock, Polycyclic aromatic hydrocarbons, in Introduction to Organic Chemistry 1976, pp. 485–489 (MacMillan Publishing, New York).
[41] F. J. González, L. Somoza, R. Lunar, J. Martínez-Frías, J. A. M. Rubí, T. Torres, J. E. Ortiz, V. Díaz-del-Río, Internal features, mineralogy and geochemistry of ferromanganese nodules from the Gulf of Cadiz: the role of the Mediterranean outflow water undercurrent. J. Mar. Syst. 2010, 80, 203.
| Internal features, mineralogy and geochemistry of ferromanganese nodules from the Gulf of Cadiz: the role of the Mediterranean outflow water undercurrent.Crossref | GoogleScholarGoogle Scholar |