Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Houston’s rapid ozone increases: preconditions and geographic origins

Evan Couzo A , Harvey E. Jeffries A and William Vizuete A B
+ Author Affiliations
- Author Affiliations

A University of North Carolina, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA.

B Corresponding author. Email: vizuete@unc.edu

Environmental Chemistry 10(3) 260-268 https://doi.org/10.1071/EN13040
Submitted: 16 February 2013  Accepted: 19 April 2013   Published: 28 June 2013

Environmental context. Ozone pollution in Houston, Texas, has been a public health concern for decades. Unusually large hourly changes in observed ozone concentrations have been correlated with a greater likelihood of violating the federal air quality standard. We investigate the geographic and chemical origins of these large hourly increases, which should help regulators better control ozone violations.

Abstract. Many of Houston’s highest 8-h ozone (O3) peaks are characterised by increases in concentrations of at least 40 ppb in 1 h, or 60 ppb in 2 h. These rapid increases are called non-typical O3 changes (NTOCs). In 2004, the Texas Commission on Environmental Quality (TCEQ) developed a novel emissions control strategy aimed at eliminating NTOCs. The strategy limited routine and short-term emissions of ethene, propene, 1,3-butadiene and butene isomers, collectively called highly reactive volatile organic compounds (HRVOCs), which are released from petrochemical facilities. HRVOCs have been associated with NTOCs through field campaigns and modelling studies. This study analysed wind measurements and O3, formaldehyde (HCHO) and sulfur dioxide (SO2) concentrations from 2000 to 2011 at 25 ground monitors in Houston. NTOCs almost always occurred when monitors were downwind of petrochemical facilities. Rapid O3 increases were associated with low wind speeds; 75 % of NTOCs occurred when the 3-h average wind speed preceding the event was less than 6.5 km h–1. Statistically significant differences in HCHO concentrations were seen between days with and without NTOCs. Early afternoon HCHO concentrations were greater on NTOC days. In the morning before an observed NTOC event, however, there were no significant differences in HCHO concentrations between days with and without NTOCs. Hourly SO2 concentrations also increased rapidly, exhibiting behaviour similar to NTOCs. Oftentimes, the SO2 increases preceded a NTOC. These findings show that, despite the apparent success of targeted HRVOC emission controls, further restrictions may be needed to eliminate the remaining O3 events.


References

[1]  Revisions to the State Implementation Plan (SIP) for Control of Ozone Air Pollution: Houston/Galveston/Brazoria Ozone Nonattainment Area, Project number 2004–042-SIP-NR 2004 (Texas Commission on Environmental Quality: Austin, TX).

[2]  L. I. Kleinman, P. H. Daum, D. Imre, Y.-N. Lee, L. J. Nunnermacker, S. R. Springston, J. Weinstein-Lloyd, J. Rudolph, Ozone production rate and hydrocarbon reactivity in 5 urban areas: a cause of high ozone concentration in Houston. Geophys. Res. Lett. 2002, 29, 1467.
Ozone production rate and hydrocarbon reactivity in 5 urban areas: a cause of high ozone concentration in Houston.Crossref | GoogleScholarGoogle Scholar |

[3]  P. H. Daum, L. I. Kleinman, S. R. Springston, L. J. Nunnermacker, Y.-N. Lee, J. Weinstein-Lloyd, J. Zheng, C. M. Berkowitz, A comparative study of O3 formation in the Houston urban and industrial plumes during the 2000 Texas Air Quality Study. J. Geophys. Res. – Atmos. 2003, 108, 4715.
A comparative study of O3 formation in the Houston urban and industrial plumes during the 2000 Texas Air Quality Study.Crossref | GoogleScholarGoogle Scholar |

[4]  T. B. Ryerson, M. Trainer, W. M. Angevine, C. A. Brock, R. W. Dissly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, J. S. Holloway, G. Hubler, R. O. Jakoubek, W. C. Kuster, J. A. Neuman, D. K. Nicks, D. D. Parrish, J. M. Roberts, D. T. Sueper, E. L. Atlas, S. G. Donnelly, F. Flocke, A. Fried, W. T. Potter, S. Schauffler, B. Stroud, A. J. Weinhelmer, B. P. Wert, C. Wiedinmyer, R. J. Alvarez, R. M. Banta, L. S. Darby, C. J. Senff, Effect of petrochemical industrial emissions of reactive alkenes and NOx on trophospheric ozone formation in Houston, Texas. J. Geophys. Res. – Atmos. 2003, 108, 4249.
Effect of petrochemical industrial emissions of reactive alkenes and NOx on trophospheric ozone formation in Houston, Texas.Crossref | GoogleScholarGoogle Scholar |

[5]  W. Vizuete, H. E. Jeffries, T. W. Tesche, E. P. Olaguer, E. Couzo, Issues with ozone attainment methodology for Houston, TX. J. Air Waste Manag. Assoc. 2011, 61, 238.
Issues with ozone attainment methodology for Houston, TX.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktFantrg%3D&md5=975db8a82d1421bec2e974bb0f1f5b3eCAS | 21416750PubMed |

[6]  E. Couzo, A. Olatosi, H. E. Jeffries, W. Vizuete, Assessment of a regulatory model’s performance relative to large spatial heterogeneity in observed ozone in Houston, Texas. J. Air Waste Manag. Assoc. 2012, 62, 696.
Assessment of a regulatory model’s performance relative to large spatial heterogeneity in observed ozone in Houston, Texas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsVGmu70%3D&md5=1bf470bd17e8f68ca3e946fa475d6583CAS | 22788108PubMed |

[7]  P. H. Daum, L. I. Kleinman, S. R. Springston, L. J. Nunnermacker, Y.-N. Lee, J. Weinstein-Lloyd, J. Zheng, C. M. Berkowitz, Origin and properties of plumes of high ozone observed during the Texas 2000 Air Quality Study (TexAQS 2000). J. Geophys. Res. – Atmos. 2004, 109, D17306.
Origin and properties of plumes of high ozone observed during the Texas 2000 Air Quality Study (TexAQS 2000).Crossref | GoogleScholarGoogle Scholar |

[8]  C. M. Berkowitz, C. W. Spicer, P. V. Doskey, Hydrocarbon observations and ozone production rates in Western Houston during the Texas 2000 Air Quality Study. Atmos. Environ. 2005, 39, 3383.
Hydrocarbon observations and ozone production rates in Western Houston during the Texas 2000 Air Quality Study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFWhsbw%3D&md5=965ef51f749c68e773ebe75c6eec555cCAS |

[9]  R. A. Washenfelder, M. Trainer, G. J. Frost, T. B. Ryerson, E. L. Atlas, J. A. de Gouw, F. M. Flocke, A. Fried, J. S. Holloway, D. D. Parrish, J. Peischl, D. Richter, S. M. Schauffler, J. G. Walega, C. Warneke, P. Weibring, W. Zheng, Characterization of NOx, SO2, ethene, and propene from industrial emission sources in Houston, Texas. J. Geophys. Res. – Atmos. 2010, 115, D16311.
Characterization of NOx, SO2, ethene, and propene from industrial emission sources in Houston, Texas.Crossref | GoogleScholarGoogle Scholar |

[10]  F. Gan, P. K. Hopke, Data mining of the relationship between volatile organic compounds and transient high ozone formation. Anal. Chim. Acta 2003, 490, 153.
Data mining of the relationship between volatile organic compounds and transient high ozone formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVOltro%3D&md5=51fbc53553466b31fa5335fd74e7674bCAS |

[11]  E. C. Wood, S. C. Herndon, E. C. Fortner, T. B. Onasch, J. Wormhoudt, C. E. Kolb, W. B. Knighton, B. H. Lee, M. Zavala, L. Molina, M. Jones, Combustion and destruction/removal efficiencies of in-use chemical flares in the greater Houston area. Ind. Eng. Chem. Res. 2012, 51, 12685.
Combustion and destruction/removal efficiencies of in-use chemical flares in the greater Houston area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlslGqtrk%3D&md5=1e79c6e5020198405d5098ed2a7cb17cCAS |

[12]  B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, A. Wisthaler, Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000. J. Geophys. Res. – Atmos. 2003, 108, 4104.
Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000.Crossref | GoogleScholarGoogle Scholar |

[13]  C. F. Murphy, D. T. Allen, Hydrocarbon emissions from industrial release events in the Houston-Galveston area and their impact on ozone formation. Atmos. Environ. 2005, 44, 4230.

[14]  E. Cowling, C. Furiness, B. Dimitriades, D. Parrish, Final rapid science synthesis report: findings from the second Texas Air Quality study (TexAQS II) – Final report to the Texas Commission on Environmental Quality, TCEQ Contract Number 582–4-65614 2007 (Southern Oxidants Study Office, North Carolina State University). Available at http://aqrp.ceer.utexas.edu/docs/RSSTFinalReportAug31.pdf [Verified 29 April 2013].

[15]  M. Webster, J. Nam, Y. Kimura, H. E. Jeffries, W. Vizuete, D. T. Allen, The effect of variability in industrial emissions on ozone formation in Houston, Texas. Atmos. Environ. 2007, 41, 9580.
The effect of variability in industrial emissions on ozone formation in Houston, Texas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOisrfK&md5=8cb4e83bb013037e47118294b89f9f7cCAS |

[16]  J. A. de Gouw, S. T. L. Hekkert, J. Mellqvist, C. Warneke, E. L. Atlas, F. C. Fehsenfeld, A. Fried, G. J. Frost, F. J. M. Harren, J. S. Holloway, B. Lefer, R. Lueb, J. F. Meagher, D. D. Parrish, M. Patel, L. Pope, D. Richter, C. Rivera, T. B. Ryerson, J. Samuelsson, J. Walega, R. A. Washenfelder, P. Weibring, X. Zhu, Airborne measurements of ethene from industrial sources using laser photo-acoustic spectroscopy. Environ. Sci. Technol. 2009, 43, 2437.
Airborne measurements of ethene from industrial sources using laser photo-acoustic spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVeisLk%3D&md5=28548b7c046d6a84a1358e81a88aa8c3CAS | 19452898PubMed |

[17]  B. J. McCoy, P. S. Fischbeck, D. Gerard, How big is big? How often is often? Characterizing Texas petroleum refining upset air emissions. Atmos. Environ. 2010, 44, 4230.
How big is big? How often is often? Characterizing Texas petroleum refining upset air emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFChsLzO&md5=988fd59dfb79f32751058c7e83d50f25CAS |

[18]  R. M. Banta, C. J. Senff, J. Nielsen-Gammon, L. S. Darby, T. B. Ryerson, R. J. Alvarez, S. P. Sandberg, E. J. Williams, M. Trainer, A bad air day in Houston. Bull. Am. Meteorol. Soc. 2005, 86, 657.
A bad air day in Houston.Crossref | GoogleScholarGoogle Scholar |

[19]  F. Ngan, D. Byun, Classification of weather patterns and associated trajectories of high-ozone episodes in the Houston-Galveston-Brazoria area during the 2005/06 TexAQS-II. J. Appl. Meteorol. Climatol. 2011, 50, 485.
Classification of weather patterns and associated trajectories of high-ozone episodes in the Houston-Galveston-Brazoria area during the 2005/06 TexAQS-II.Crossref | GoogleScholarGoogle Scholar |

[20]  W. Vizuete, H. E. Jeffries, A. Valencia, E. Couzo, E. Christoph, J. Wilkinson, B. Henderson, H. Parikh, J. Kolling, HARC Project H97: Multi-model, multi-episode process analysis to investigate ozone formation and control sensitivity in the 2000/2005/2006 Houston SIP episode models 2009 (Houston Advanced Research Center). Available at http://projects.tercairquality.org/AQR/H097 [Verified 29 April 2013].

[21]  J. H. Seinfeld, S. N. Pandis, Chemistry of the troposphere, in Atmospheric Chemistry and Physics, 2nd edn 2006, Ch. 6, p. 248 (Wiley: Hoboken, NJ).

[22]  W. Vizuete, B.-U. Kim, H. E. Jeffries, Y. Kimura, D. T. Allen, M.-A. Kioumourtzoglou, L. Biton, B. Henderson, Modeling ozone formation from industrial emission events in Houston, Texas. Atmos. Environ. 2008, 42, 7641.
Modeling ozone formation from industrial emission events in Houston, Texas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GrsLzE&md5=3f6937443d076c73609c2542b59be7edCAS |

[23]  B. H. Henderson, H. E. Jeffries, B.-U. Kim, W. Vizuete, The influence of model resolution on ozone in industrial volatile organic compound plumes. J. Air Waste Manag. Assoc. 2010, 60, 1105.
The influence of model resolution on ozone in industrial volatile organic compound plumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Whu7nM&md5=3d5a742b63c8c7a859f71a1805626f70CAS | 20863055PubMed |

[24]  A. R. Garcia, R. Volkamer, L. T. Molina, M. J. Molina, J. Samuelson, J. Mellqvist, B. Galle, S. C. Herndon, C. E. Kolb, Separation of emitted and photochemical formaldehyde in Mexico City using a statistical analysis and a new pair of gas-phase tracers. Atmos. Chem. Phys. 2006, 6, 4545.
Separation of emitted and photochemical formaldehyde in Mexico City using a statistical analysis and a new pair of gas-phase tracers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKltLo%3D&md5=1ff7fdbc2c1d0ecf873ebc9174beb674CAS |

[25]  E. P. Olaguer, B. Rappengluck, B. Lefer, J. Stutz, J. Dibb, R. Griffin, W. H. Brune, M. Shauck, M. Buhr, H. E. Jeffries, W. Vizuete, J. P. Pinto, Deciphering the role of radical precursors during the Second Texas Air Quality Study. J. Air Waste Manag. Assoc. 2009, 59, 1258.
Deciphering the role of radical precursors during the Second Texas Air Quality Study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2jsLnE&md5=0f5436b9e5659e024f3ccd97e4aad5b4CAS | 19947108PubMed |

[26]  B. Buzcu Guven, E. P. Olaguer, Ambient formaldehyde source attribution in Houston during TexAQS II and TRAMP. Atmos. Environ. 2011, 45, 4272.
Ambient formaldehyde source attribution in Houston during TexAQS II and TRAMP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFOgsro%3D&md5=c365064aabe1fa02aa8c89892d5a6bd4CAS |

[27]  D. D. Parrish, T. B. Ryerson, J. Mellqvist, J. Johansson, A. Fried, D. Richter, J. G. Walega, R. A. Washenfelder, J. A. de Gouw, J. Peischl, K. C. Aikin, S. A. McKeen, G. J. Frost, F. C. Fehsenfeld, S. C. Herndon, Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region. Atmos. Chem. Phys. 2012, 12, 3273.
Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptFels7g%3D&md5=b932ee820b7401296fdf9215166df615CAS |

[28]  H. Zhang, J. Li, Q. Ying, B. B. Guven, E. P. Olaguer, Source apportionment of formaldehyde during TexAQS 2006 using a source-oriented chemical transport model. J. Geophys. Res. – Atmos. 2013, 118, 1525.

[29]  B. Rappenglück, P. K. Dasgupta, M. Leuchner, Q. Li, W. Luke, Formaldehyde and its relation to CO, PAN, and SO2 in the Houston–Galveston airshed. Atmos. Chem. Phys. 2010, 10, 2413.
Formaldehyde and its relation to CO, PAN, and SO2 in the Houston–Galveston airshed.Crossref | GoogleScholarGoogle Scholar |

[30]  J. Stutz, O. Pikelnaya, G. Mount, E. Spinei, S. Herndon, E. Wood, O. Oluwole, W. Vizuete, E. Couzo, Quantification of hydrocarbon, NOx, and SO2, emissions from petrochemical facilities in Houston: Interpretation of 2009 FLAIR dataset, Project 10‐045 Final Report, Air Quality Research Plan 2011 (Air Quality Research Program, The University of Texas: Austin, TX). Available at http://aqrp.ceer.utexas.edu/projectinfo\10-045\10-045FinalReport.pdf [Verified 29 April 2013].