Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Agglomeration and dissolution of zinc oxide nanoparticles: role of pH, ionic strength and fulvic acid

Rute F. Domingos A C , Zohreh Rafiei B , Carlos E. Monteiro A , Mohammad A.K. Khan B and Kevin J. Wilkinson B
+ Author Affiliations
- Author Affiliations

A Centro de Química Estrutural, Instituto Superior Técnico/Universidade Técnica de Lisboa, Torre Sul lab 11-6.3, Avenida Rovisco Pais # 1, PT-1049-001 Lisbon, Portugal.

B Département de Chimie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC, H3C 3J7, Canada.

C Corresponding author. Email: rute.domingos@ist.utl.pt

Environmental Chemistry 10(4) 306-312 https://doi.org/10.1071/EN12202
Submitted: 28 December 2012  Accepted: 24 May 2013   Published: 2 August 2013

Environmental context. The number of nano-enabled products reaching consumers is growing exponentially, inevitably resulting in their release to the environment. The environmental fate and mobility of nanomaterials will depend on their physicochemical form(s) under natural conditions. For ZnO nanoparticles, determinations of agglomeration and dissolution under environmentally relevant conditions of pH, ionic strength and natural organic matter content will provide insight into the potential environmental risk of these novel products.

Abstract. The increasing use of engineered nanoparticles (ENPs) in industrial and household applications has led to their release into the environment and increasing concern about their effects. Proper assessment of the ecological risks of ENPs will require data on their bioavailability, persistence and mobility over a broad range of physicochemical conditions, including environmentally relevant pH, ionic strength and concentrations of natural organic matter (NOM). In this study, fluorescence correlation spectroscopy was used to determine the agglomeration of a ZnO ENP (nZnO) with a nominal size of 20 nm. Particle dissolution was followed using scanned stripping chronopotentiometry. The effects of Suwannee River fulvic acid (SRFA, 0–60 mg L–1) and the roles of pH (4–10) and ionic strength (0.005–0.1 M) were carefully evaluated. Agglomeration of the bare nZnO increased for pH values near the zero point of charge, whereas the dissolution of the particles decreased. At any given pH, an increase in ionic strength generally resulted in a less stable colloidal system. The role of SRFA was highly dependent upon its concentration with increased agglomeration observed at low SRFA : nZnO mass ratios and decreased agglomeration observed at higher SRFA : nZnO mass ratios. The results indicated that in natural systems, both nZnO dispersion and dissolution will be important and highly dependent upon the precise conditions of pH and ionic strength.


References

[1]  M. Hadioui, S. Leclerc, K. J. Wilkinson, Multimethod quantification of Ag+ release from nanosilver. Talanta 2013, 105, 15.
Multimethod quantification of Ag+ release from nanosilver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1WjurY%3D&md5=0e08f829ac4fdd35c8fd153da642fecdCAS | 23597981PubMed |

[2]  Z. L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter 2004, 16, R829.
Zinc oxide nanostructures: growth, properties and applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVyhtLY%3D&md5=596622a20a7397cdc8b62f2f5b739429CAS |

[3]  H. C. Poynton, J. M. Lazorchak, C. A. Impellitteri, M. E. Smith, K. Rogers, M. Patra, K. A. Hammer, H. J. Allen, C. D. Vulpe, Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ. Sci. Technol. 2011, 45, 762.
Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGltbjI&md5=10a992f69ccc7d26c1bf10ab8f8fedceCAS | 21142172PubMed |

[4]  A.-J. Miao, X.-Y. Zhang, Z. Luo, C.-S. Chen, W.-C. Chin, P. H. Santschi, A. Quigg, Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ. Toxicol. Chem. 2010, 29, 2814.
Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFags7rM&md5=85a67b561530b77662c4d5cf3937baebCAS | 20931607PubMed |

[5]  K. Wiench, W. Wohlleben, V. Hisgen, K. Radke, E. Salinas, S. Zok, R. Landsiedel, Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere 2009, 76, 1356.
Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSnsrnJ&md5=fa0b307ecf68693d67e55f12c8fb44e1CAS | 19580988PubMed |

[6]  N. M. Franklin, N. J. Rogers, S. C. Apte, C. E. Batley, G. E. Gadd, P. S. Casey, Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 2007, 41, 8484.
Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWqs7fF&md5=dc317e704ab9ed82bf4b5dbadcbdd84bCAS | 18200883PubMed |

[7]  V. Aruoja, H.-C. Dubourguier, K. Kasemets, A. Kahru, Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci. Total Environ. 2009, 407, 1461.
Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOmsrvP&md5=34c5e3e6df89b5f7ce727cb14aaafc17CAS | 19038417PubMed |

[8]  A. A. Keller, H. Wang, D. Zhou, H. S. Lenihan, G. Cherr, B. J. Cardinale, R. Miller, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 2010, 44, 1962.
Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFWgtLk%3D&md5=0bcf43839222844347fce0dc022fe9efCAS | 20151631PubMed |

[9]  S.-W. Bian, I. A. Mudunkotuwa, T. Rupasinghe, V. H. Grassian, Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 2011, 27, 6059.
Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVSls7w%3D&md5=a0f4da290a0c593b2155777d58b78cb8CAS | 21500814PubMed |

[10]  I. A. Mudunkotuwa, T. Rupasinghe, C.-M. Wu, V. H. Grassian, Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid. Langmuir 2012, 28, 396.
Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFansLjO&md5=9b9bce7bcd92a16ba39ef93b9f0bac8dCAS | 22122742PubMed |

[11]  A. W. Adamson, Physical Chemistry of Surfaces 1982 (Wiley: New York).

[12]  E. A. Meulenkamp, Size dependence of the dissolution of ZnO nanoparticles. J. Phys. Chem. B 1998, 102, 7764.
Size dependence of the dissolution of ZnO nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvFWlurc%3D&md5=bcd9dae2cf07bf0d42e4b0061af9bd54CAS |

[13]  W. Vogelsberger, J. Schmidt, F. Roelofs, Dissolution kinetics of oxidic nanoparticles: the observation of an unusual behaviour. Colloids Surf. A 2008, 324, 51.
Dissolution kinetics of oxidic nanoparticles: the observation of an unusual behaviour.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1Ontrk%3D&md5=075cbe865356b2d9dbe60b7d5fb895c3CAS |

[14]  G. Rubasinghege, R. W. Lentz, H. Park, M. M. Scherer, V. H. Grassian, Nanorod dissolution quenched in the aggregated state. Langmuir 2010, 26, 1524.
Nanorod dissolution quenched in the aggregated state.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2lurbI&md5=76c710485452ce116b93a61afa06d7f0CAS | 19950935PubMed |

[15]  F. Gottschalk, B. Nowack, The release of engineered nanomaterials to the environment. J. Environ. Monit. 2011, 13, 1145.
The release of engineered nanomaterials to the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFShu7k%3D&md5=59753e3af8990428ddde296b24cc7457CAS | 21387066PubMed |

[16]  F. Piccinno, F. Gottschalk, S. Seeger, B. Nowack, Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanopart. Res. 2012, 14, 1109.
Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world.Crossref | GoogleScholarGoogle Scholar |

[17]  R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, G. G. Leppard, K. J. Wilkinson, Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ. Sci. Technol. 2009, 43, 7277.
Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Sgsbw%3D&md5=ec753adc7ab271cbf132e7fda7959f56CAS | 19848134PubMed |

[18]  E. L. Elson, D. Magde, Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 1974, 13, 1.
Fluorescence correlation spectroscopy. I. Conceptual basis and theory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXnsVKguw%3D%3D&md5=6a4f0677a641d2d83d4bc9d7fcb9ac1eCAS |

[19]  J. P. Pinheiro, H. P. van Leeuwen, Scanned stripping chronopotentiometry of metal complexes: lability diagnosis and stability computation. J. Electroanal. Chem. 2004, 570, 69.
Scanned stripping chronopotentiometry of metal complexes: lability diagnosis and stability computation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslGitbw%3D&md5=83183e2fd89e8f3475927e717b605fd2CAS |

[20]  N. L. Thompson, Fluorescence correlation spectroscopy, in Topics in Fluorescence Spectroscopy, Techniques (Ed. J. R. Lakowicz) 1991, vol. 1, pp. 337–378 (Plenum Press: New York).

[21]  K. Starchev, J. Buffle, E. Pérez, Applications of fluorescence correlation spectroscopy–polydispersity measurements. J. Colloid Interface Sci. 1999, 213, 479.
Applications of fluorescence correlation spectroscopy–polydispersity measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1KlsbY%3D&md5=092480ead7a7d3d5785ee4c5751f1789CAS | 10222089PubMed |

[22]  J. P. Pinheiro, R. F. Domingos, R. Lopez, R. Brayner, F. Fievet, K. J. Wilkinson, Determination of diffusion coefficients of nanoparticles and humic substances using scanning stripping chronopotentiometry (SSCP). Colloids Surf. A 2007, 295, 200.
Determination of diffusion coefficients of nanoparticles and humic substances using scanning stripping chronopotentiometry (SSCP).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlalsL8%3D&md5=4912c37e589ac8430365ece16fc67a39CAS |

[23]  R. F. Domingos, M. F. Benedetti, J. P. Pinheiro, Application of permeation liquid membrane and scanned stripping chronopotentiometry to metal speciation analysis of colloidal complexes. Anal. Chim. Acta 2007, 589, 261.
Application of permeation liquid membrane and scanned stripping chronopotentiometry to metal speciation analysis of colloidal complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvF2qtb4%3D&md5=83b4719ff7333fb35359dbe1a95c79cfCAS | 17418190PubMed |

[24]  R. F. Domingos, C. Huidobro, E. Companys, J. Galceran, J. Puy, J. P. Pinheiro, Comparison of AGNES (absence of gradients and Nernstian equilibrium stripping) and SSCP (scanned stripping chronopotentiometry) for trace metal speciation analysis. J. Electroanal. Chem. 2008, 617, 141.
Comparison of AGNES (absence of gradients and Nernstian equilibrium stripping) and SSCP (scanned stripping chronopotentiometry) for trace metal speciation analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1aqtb4%3D&md5=2fe335a21a8290735a7d72d12f1bf190CAS |

[25]  D. Goveia, J. P. Pinheiro, V. Milkova, A. H. Rosa, H. P. van Leeuwen, Dynamics and heterogeneity of PbII binding by SiO2 nanoparticles in an aqueous dispersion. Langmuir 2011, 27, 7877.
Dynamics and heterogeneity of PbII binding by SiO2 nanoparticles in an aqueous dispersion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFGhtLo%3D&md5=744d1980be8bba8d5108b6aa8ff74e79CAS | 21612251PubMed |

[26]  J. R. Lead, K. J. Wilkinson, K. Starchev, S. Canonica, J. Buffle, Determination of diffusion coefficients of humic substances by fluorescence correlation spectroscopy: role of solution conditions. Environ. Sci. Technol. 2000, 34, 1365.
Determination of diffusion coefficients of humic substances by fluorescence correlation spectroscopy: role of solution conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVSqu78%3D&md5=513b7d254847d153bf1bd5e850aa7dcbCAS |

[27]  J. Widengren, U. Mets, R. Rigler, Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J. Phys. Chem. 1995, 99, 13368.
Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotF2htrs%3D&md5=89fa5587eac9f5c720cb1c8aa58c068aCAS |

[28]  K. Starchev, K. J. Wilkinson, J. Buffle, Application of fluorescence correlation spectroscopy to the study of environmental systems, in Fluorescence Correlation Spectroscopy: Theory and Applications 2000, pp. 251–275 (Springer: Heidelberg).

[29]  P.-O. Gendron, F. Avaltroni, K. J. Wilkinson, Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient-nuclear magnetic resonance and fluorescence correlation spectroscopy. J. Fluoresc. 2008, 18, 1093.
Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient-nuclear magnetic resonance and fluorescence correlation spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWjt7rN&md5=28411ee95eabec7f1c0c0179d47940faCAS | 18431548PubMed |

[30]  R. F. Domingos, N. Tufenkji, K. J. Wilkinson, Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ. Sci. Technol. 2009, 43, 1282.
Aggregation of titanium dioxide nanoparticles: role of a fulvic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlKktA%3D%3D&md5=9681c1f29443e7159c33c2be7b9ae91fCAS | 19350891PubMed |

[31]  M. Kosmulski, Chemical Properties of Material Surfaces 2001 (CRC Press: Boca Raton, FL).

[32]  A. Sedlak, W. Janusz, Specific adsorption of carbonate ions at the zinc oxide/electrolyte solution interface. Physicochem. Probl. Miner. Process. 2008, 42, 57.
| 1:CAS:528:DC%2BD1cXhsVKmsrrL&md5=2f4a6362cdf69801d87ea70a75946a9fCAS |

[33]  C. A. David, J. Galceran, C. Rey-Castro, J. Puy, E. Companys, J. Salvador, J. Monne, R. Wallace, A. Vakourov, Dissolution kinetics and solubility of ZnO nanoparticles followed by AGNES. J. Phys. Chem. C 2012, 116, 11758.
Dissolution kinetics and solubility of ZnO nanoparticles followed by AGNES.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1ersr0%3D&md5=a9fffac029d19e7a707a715d7cc572b1CAS |

[34]  S. Yamabi, H. Imai, Growth conditions for wurtzite zinc oxide films in aqueous solutions. J. Mater. Chem. 2002, 12, 3773.
Growth conditions for wurtzite zinc oxide films in aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFSmt7o%3D&md5=8dd32ebaa3e9636259e4e136d54135f2CAS |

[35]  D. Horn, J. Rieger, Organic nanoparticles in the aqueous phase – theory, experiment, and use. Angew. Chem. Int. Ed. 2001, 40, 4330.
Organic nanoparticles in the aqueous phase – theory, experiment, and use.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlWhsbk%3D&md5=e599d0b5fb2b2439bf1f177b6eedce8fCAS |

[36]  S. H. Yalkowsky, Solubility and Solubilization in Aqueous Media 1999 (Oxford University Press: New York).

[37]  F. Gottschalk, T. Sonderer, R. W. Scholz, B. Nowack, Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 2009, 43, 9216.
Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyhtL%2FP&md5=e5f0af0f6e0d53decac02d4822cc705cCAS | 20000512PubMed |

[38]  M. Hosse, K. J. Wilkinson, Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of pH and ionic strength. Environ. Sci. Technol. 2001, 35, 4301.
Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of pH and ionic strength.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt12qu7g%3D&md5=11648ff5230186032bdbd753c3fc227bCAS | 11718346PubMed |

[39]  E. Tipping, D. C. Higgins, The effect of adsorbed humic substances on the colloid stability of heamatite particles. Colloids Surf. 1982, 5, 85.
The effect of adsorbed humic substances on the colloid stability of heamatite particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlvVyktb8%3D&md5=563d8f55b8f9701c08a83bf807d05b06CAS |

[40]  J. Buffle, K. J. Wilkinson, S. Stoll, M. Filella, J. Zhang, A generalized description of aquatic colloidal interactions: the three-colloidal component approach. Environ. Sci. Technol. 1998, 32, 2887.
A generalized description of aquatic colloidal interactions: the three-colloidal component approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVyqt7w%3D&md5=1ece2cfb8788b2d9a1ad73dbe13efaa9CAS |