Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Evaluation of centrifugal ultrafilters for size fractionation of total mercury and methylmercury in freshwaters

David Kocman A B , Scott C. Brooks A C , Carrie L. Miller A and Xiangping L. Yin A
+ Author Affiliations
- Author Affiliations

A Environmental Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA.

B Present address: Jožef Stefan Institute, Department of Environmental Sciences, Jamova 39, 1000 Ljubljana, Slovenia.

C Corresponding author: Email: brookssc@ornl.gov

Environmental Chemistry 10(4) 323-332 https://doi.org/10.1071/EN12199
Submitted: 19 December 2012  Accepted: 18 May 2013   Published: 5 August 2013

Environmental context. Although mercury associated with colloids is an important part of the aquatic Hg cycle, there is currently no fast and reliable method to separate complexes smaller than traditional filter pore sizes. We test commercially available centrifugal ultrafilters for their applicability to size fractionation of total Hg and methylmercury in freshwaters. Sorption of Hg onto the filters precludes their use for fractionation of inorganic Hg, the approach proved to be very suitable for methylmercury fractionation regardless of sample organic matter content.

Abstract. Amicon Ultra-15 centrifugal filters with nominal molecular weight cut-offs of 100, 30 and 3 kDa, were tested for separating Hg complexes in freshwaters. Experiments used Hg-contaminated water from East Fork Poplar Creek (EFPC) and laboratory-prepared Hg solutions containing Suwannee River natural organic matter (SR-NOM). Investigations focussed on Hg and dissolved organic carbon blank levels, Hg sorption and leaching, Hg mass balance closure and spike recoveries of inorganic and methylmercury (MeHg). Hg spike recoveries for EFPC samples were low (57 ± 16 %, n = 30) due to sorption. MeHg recovery averaged 87 ± 9 % (n = 15) suggesting it was less affected by sorptive losses. SR-NOM samples yielded similar dissolved organic matter (DOM) and MeHg size fractionation patterns with ~20 % of the MeHg found in the less than 3-kDa fraction. Overall, the distribution of MeHg followed a pattern similar to the DOM, indicating the importance of both sample DOM quantity and quality for MeHg partitioning in aquatic systems. Although the use of these ultrafilters for inorganic Hg in freshwater samples is not recommended, they were successfully used for MeHg in EFPC where the majority of MeHg was found to be either dissolved or associated with phases smaller than 3 kDa.


References

[1]  L. Guo, P. H. Santschi, Ultrafiltration and its applications to sampling and characterisation of aquatic colloids, in Environmental Colloids and Particles: Behaviour, Separation and Characterisation (Eds K. J. Wilkinson, J. R. Lead) 2007, pp. 159–221 (Wiley: Chichester, UK).

[2]  S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, J. R. Lead, Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825.
Nanomaterials in the environment: behavior, fate, bioavailability, and effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVersLjJ&md5=6645abfd7ebb9ed401bd38dd5a08ba95CAS | 19086204PubMed |

[3]  G. R. Aiken, H. Hsu-Kim, J. N. Ryan, Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ. Sci. Technol. 2011, 45, 3196.
Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFKqt7k%3D&md5=7199a24d20f1b84cd304a54f865e21b4CAS | 21405118PubMed |

[4]  L. Guo, P. H. Santschi, S. M. Ray, Metal partitioning between colloidal and dissolved phases and its relation with bioavailability to American oysters. Mar. Environ. Res. 2002, 54, 49.
Metal partitioning between colloidal and dissolved phases and its relation with bioavailability to American oysters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVSisL4%3D&md5=1f8f19994cdfcef7aaa01121773f7dd5CAS | 12148944PubMed |

[5]  C. L. Babiarz, J. P. Hurley, S. R. Hoffmann, A. W. Andren, M. M. Shafer, D. E. Armstrong, Partitioning of total mercury and methylmercury to the colloidal phase in freshwaters. Environ. Sci. Technol. 2001, 35, 4773.
Partitioning of total mercury and methylmercury to the colloidal phase in freshwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFOnsLY%3D&md5=5252cab84ca3568744badc04efa00bd9CAS | 11775152PubMed |

[6]  M. C. Stordal, G. A. Gill, L.-S. Wen, P. H. Santschi, Mercury phase speciation in the surface waters of three Texas estuaries: importance of colloidal forms. Limnol. Oceanogr. 1996, 41, 52.
Mercury phase speciation in the surface waters of three Texas estuaries: importance of colloidal forms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitlalsLY%3D&md5=84164f83ace9d451a03e4f2555c5c1f8CAS |

[7]  L. Guo, B. J. Hunt, P. H. Santschi, S. Ray, Effect of dissolved organic matter on the uptake of trace metals by American oysters. Environ. Sci. Technol. 2001, 35, 885.
Effect of dissolved organic matter on the uptake of trace metals by American oysters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsVeqsw%3D%3D&md5=c0faf24181dccfa90ccc0de8739339a7CAS | 11351531PubMed |

[8]  K.-Y. Choe, G. A. Gill, Isolation of colloidal monomethyl mercury in natural waters using cross-flow ultrafiltration techniques. Mar. Chem. 2001, 76, 305.
Isolation of colloidal monomethyl mercury in natural waters using cross-flow ultrafiltration techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosF2ntL8%3D&md5=a1c299dbf2be7613b8b07deb770d79dcCAS |

[9]  K.-Y. Choe, G. A. Gill, R. Lehman, Distribution of particulate, colloidal, and dissolved mercury in San Francisco Bay estuary. 1. Total mercury. Limnol. Oceanogr. 2003, 48, 1535.
Distribution of particulate, colloidal, and dissolved mercury in San Francisco Bay estuary. 1. Total mercury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFCktbk%3D&md5=bed7c269e022142761f559ab76b77a8bCAS |

[10]  C. L. Babiarz, J. P. Hurley, D. P. Krabbenhoft, C. Gilmour, B. A. Branfireun, Application of ultrafiltration and stable isotopic amendments to field studies of mercury partitioning to filterable carbon in lake water and overland runoff. Sci. Total Environ. 2003, 304, 295.
Application of ultrafiltration and stable isotopic amendments to field studies of mercury partitioning to filterable carbon in lake water and overland runoff.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit12itrY%3D&md5=d09b4f6f5bc061798bb9f6c018c9954dCAS | 12663191PubMed |

[11]  J. R. Hill, N. J. O’Driscoll, D. R. S. Lean, Size distribution of methylmercury associated with particulate and dissolved organic matter in freshwaters. Sci. Total Environ. 2009, 408, 408.
Size distribution of methylmercury associated with particulate and dissolved organic matter in freshwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWqsbjJ&md5=82af17449dc410b1f0758680b5eec6acCAS | 19850323PubMed |

[12]  S. Lee, S. Han, G. A. Gill, Estuarine mixing behavior of colloidal organic carbon and colloidal mercury in Galveston Bay, Texas. J. Environ. Monit. 2011, 13, 1703.
Estuarine mixing behavior of colloidal organic carbon and colloidal mercury in Galveston Bay, Texas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlWru7c%3D&md5=979843f1c569aa260babb8b7ed0db913CAS | 21584306PubMed |

[13]  A. Deonarine, H. Hsu-Kim, Precipitation of mercuric sulfide nanoparticles in NOM-containing water: implications for the natural environment. Environ. Sci. Technol. 2009, 43, 2368.
Precipitation of mercuric sulfide nanoparticles in NOM-containing water: implications for the natural environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1Glt7g%3D&md5=77cba5694723152b97b6ea91a727a94cCAS | 19452888PubMed |

[14]  A. J. Slowey, Rate of formation and dissolution of mercury sulfide nanoparticles: The dual role of natural organic matter. Geochim. Cosmochim. Acta 2010, 74, 4693.
Rate of formation and dissolution of mercury sulfide nanoparticles: The dual role of natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosF2hurc%3D&md5=1e580eb31da8006eb09aac28fd8fc53bCAS |

[15]  C. A. Gerbig, C. S. Kim, J. P. Stegemeier, J. N. Rzan, G. R. Aiken, Formation of nanocolloidal metacinnabar in mercury–DOM–sulfide systems. Environ. Sci. Technol. 2011, 45, 9180.
Formation of nanocolloidal metacinnabar in mercury–DOM–sulfide systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ClsbzI&md5=3d0c2f839fd29f87efcd84c313cff641CAS | 21877758PubMed |

[16]  C. L. Babiarz, S. R. Hoffmann, M. M. Shafer, J. P. Hurley, A. W. Andren, D. E. Armstrong, A critical evaluation of tangential-flow ultrafiltration for trace metal studies in freshwater systems. 2. Total mercury and methylmercury. Environ. Sci. Technol. 2000, 34, 3428.
A critical evaluation of tangential-flow ultrafiltration for trace metal studies in freshwater systems. 2. Total mercury and methylmercury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksleit70%3D&md5=ad56e38e90b1f8946a9d42d1ee5572c8CAS |

[17]  C. L. Miller, R. P. Mason, C. G. Gilmore, A. Heyes, Influence of dissolved organic matter on complexation of Hg under sulfidic conditions. Environ. Toxicol. Chem. 2007, 26, 624.
Influence of dissolved organic matter on complexation of Hg under sulfidic conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Cnurg%3D&md5=46540234fe48ce29338279655cd40836CAS | 17447546PubMed |

[18]  S. M. Ghorpade, Interactions between natural organic matter qualities and mercury transport in a boreal watershed 2010, M.Sc. thesis, Faculty of the Graduate School of the University of Maryland, College Park, MD.

[19]  J. R. Flanders, R. R. Turner, T. Morrison, R. Jensen, J. Pizzuto, K. Skalak, R. Stahl, Distribution, behavior, and transport of inorganic and methylmercury in a high gradient stream. Appl. Geochem. 2010, 25, 1756.
Distribution, behavior, and transport of inorganic and methylmercury in a high gradient stream.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlehtL3J&md5=78fc396353a96c38a978b316f7bfa616CAS |

[20]  Amicon Ultra-15 Centrifugal Filter Devices Users Guide 2003 (Millipore). Available at http://www.millipore.com/userguides/tech1/centrifugal_ivd_userguide [Verified 28 June 2013].

[21]  S. C. Brooks, G. R. Southworth, History of mercury use and environmental contamination at the Oak Ridge Y-12 Plant. Environ. Pollut. 2011, 159, 219.
History of mercury use and environmental contamination at the Oak Ridge Y-12 Plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVahtbnF&md5=1b2a081ac1a47d2724f188c13d8abaa7CAS | 20889247PubMed |

[22]  A. J. Stewart, J. G. Smith, J. M. Loar, Long-term water-quality changes in East Fork Poplar Creek, Tennessee: background, trends, and potential biological consequences. Environ. Manage. 2011, 47, 1021.
Long-term water-quality changes in East Fork Poplar Creek, Tennessee: background, trends, and potential biological consequences.Crossref | GoogleScholarGoogle Scholar | 21380789PubMed |

[23]  S. M. Serkiz, E. M. Perdue, Isolation of dissolved organic matter from the Suwannee River using reverse osmosis. Water Res. 1990, 24, 911.
Isolation of dissolved organic matter from the Suwannee River using reverse osmosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlt1Smt7k%3D&md5=45c606a4b3f19da8b65e18897c8ad644CAS |

[24]  H. Hintelmann, N. Ogrinc, Determination of stable mercury isotopes by ICP/MS and their application in environmental studies, in Biogeochemistry of Environmentally Important Trace Elements (Eds Y. Cai, C. O. Braids) 2002, ACS Symposium Series 835, pp. 321–338 (American Chemical Society: Washington, DC).

[25]  S. Stürup, C. Chen, J. Jukosky, C. Folt, Isotope dilution quantification of 200Hg2+ and CH3201Hg+ enriched species-specific tracers in aquatic systems by cold vapor ICPMS and algebraic de-convoluting. Int. J. Mass Spectrom. 2005, 242, 225.
Isotope dilution quantification of 200Hg2+ and CH3201Hg+ enriched species-specific tracers in aquatic systems by cold vapor ICPMS and algebraic de-convoluting.Crossref | GoogleScholarGoogle Scholar |

[26]  EPA 1631, Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry 2002 (Environmental Protection Agency, Washington, DC).

[27]  EPA 1630, Methyl Mercury in Water by Distillation, Aqueous Ethylation 2001 (Environmental Protection Agency, Washington, DC).

[28]  T. Zhang, H. Hsu-Kim, Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nat. Geosci. 2010, 3, 473.
Photolytic degradation of methylmercury enhanced by binding to natural organic ligands.Crossref | GoogleScholarGoogle Scholar | 20634995PubMed |

[29]  J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, K. Mopper, Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53, 955.
Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter.Crossref | GoogleScholarGoogle Scholar |

[30]  K. J. Howe, M. M. Clark, Coagulation pretreatment for membrane filtration 2000 (AWWA Research Foundation and American Water Works Association: Denver, CO).

[31]  J. L. Parker, N. S. Bloom, Preservation and storage techniques for low-level aqueous mercury speciation. Sci. Total Environ. 2005, 337, 253.
Preservation and storage techniques for low-level aqueous mercury speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFyr&md5=8f1bc63cd99a85810a4d9c4116984829CAS | 15626395PubMed |

[32]  M. Ravichandran, Interactions between mercury and dissolved organic matter – a review. Chemosphere 2004, 55, 319.
Interactions between mercury and dissolved organic matter – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFWgtbg%3D&md5=eea1d7c25f3f0cb30bb4a8f572276d84CAS | 14987930PubMed |

[33]  M. Haitzer, G. R. Aiken, J. N. Ryan, Binding of mercury(II) to dissolved organic matter: The role of the mercury-to-DOM concentration ratio. Environ. Sci. Technol. 2002, 36, 3564.
Binding of mercury(II) to dissolved organic matter: The role of the mercury-to-DOM concentration ratio.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlWkurY%3D&md5=157b91fc76f66104f200331eafb645e0CAS | 12214650PubMed |

[34]  C. L. Miller, G. Southworth, S. Brooks, L. Liang, B. Gu, Kinetic controls on the complexation between mercury and dissolved organic matter in a contaminated environment. Environ. Sci. Technol. 2009, 43, 8548.
Kinetic controls on the complexation between mercury and dissolved organic matter in a contaminated environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1artb%2FP&md5=21f98f25930748b48c9b48b58d40a2f2CAS | 20028050PubMed |

[35]  W. Dong, L. Liang, S. Brooks, G. Southworth, B. Gu, Roles of dissolved organic matter in the speciation of mercury and methylmercury in a contaminated ecosystem in Oak Ridge, Tennessee. Environ. Chem. 2010, 7, 94.
Roles of dissolved organic matter in the speciation of mercury and methylmercury in a contaminated ecosystem in Oak Ridge, Tennessee.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt12jtLc%3D&md5=5f572fbb23bf5da20077562adf219bb6CAS |

[36]  Y.-P. Chin, G. Aiken, E. O’Loughlin, Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol. 1994, 28, 1853.
Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXls1ems7g%3D&md5=622dc709782d9dd7a174a81d0f7845f1CAS | 22175925PubMed |

[37]  C. E. Rostad, J. A. Leenheer, Factors that affect molecular weight distribution of Suwannee river fulvic acid as determined by electrospray ionization/mass spectrometry. Anal. Chim. Acta 2004, 523, 269.
Factors that affect molecular weight distribution of Suwannee river fulvic acid as determined by electrospray ionization/mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns12itrc%3D&md5=083515a279b9abde89e9f5421ca3a591CAS |

[38]  G. R. Southworth, M. J. Peterson, M. A. Bogle, Bioaccumulation factors for mercury in stream fish. Environ. Pract. 2004, 6, 135.
Bioaccumulation factors for mercury in stream fish.Crossref | GoogleScholarGoogle Scholar |

[39]  K. R. Campbell, C. J. Ford, D. A. Levine, Mercury distribution in Poplar Creek, Oak Ridge, Tennessee, USA. Environ. Toxicol. Chem. 1998, 17, 1191.
Mercury distribution in Poplar Creek, Oak Ridge, Tennessee, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvFyqsL4%3D&md5=de1984e590b34d2e0eef9aa47ed5d647CAS |

[40]  K.-Y. Choe, G. A. Gill, Distribution of particulate, colloidal, and dissolved mercury in San Francisco Bay estuary. 2. Monomethyl mercury. Limnol. Oceanogr. 2003, 48, 1547.
Distribution of particulate, colloidal, and dissolved mercury in San Francisco Bay estuary. 2. Monomethyl mercury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFCktbY%3D&md5=ff33d40713c4dde7808fc9cacd663f97CAS |