The atmospheric chemical reaction of 4-tert-butylphenol initiated by OH radicals
Chen Gong A , Xiaomin Sun A B and Chenxi Zhang AA Environment Research Institute, Shandong University, Jinan 250100, P.R. China.
B Corresponding author. Email: sxmwch@sdu.edu.cn
Environmental Chemistry 10(2) 111-119 https://doi.org/10.1071/EN12182
Submitted: 23 November 2012 Accepted: 4 April 2013 Published: 15 May 2013
Environmental context. 4-tert-Butylphenol, an environmental endocrine disruptor, can be taken in by humans and animals resulting in reproductive and developmental problems. We report a theoretical study on the degradation mechanism of 4-tert-butylphenol in the atmosphere, and calculate the atmospheric lifetime of this chemical. The data will help our understanding of the behaviour of 4-tert-butylphenol in the environment and thereby provide valuable information about its possible effect on human health.
Abstract. 4-tert-Butylphenol (TBP) is a typical environmental endocrine. In this paper, the OH-initiated degradation mechanism of TBP in the atmosphere is studied at the MPWB1K/6-31+G(d,p)//MPWB1K/6-311+G(3df,2p) level of computational theory. A profile of the potential energy surface is constructed and reaction pathways are analysed. The addition reactions of TBP with OH radicals are more important than abstraction reactions in the atmosphere. In subsequent reactions, O2 and NO may play an important role in the degradation process of TBP. The rate constants are calculated using the transition state theory and a canonical variational transition with small-curvature tunnelling correction. The Arrhenius equations of rate constants in the temperature range of 200–500 K are fitted. The rate constant of the degradation of the TBP at 298.15 K is 3.56 × 10–14 cm3 molecule–1 s–1 and the atmospheric lifetime is 10.8 months according to the pseudo-first-order kinetics.
Additional keywords: addition and abstraction reaction, environmental endocrine, rate constants.
References
[1] T. M. Crisp, E. D. Clegg, R. L. Cooper, W. P. Wood, D. G. Anderson, K. P. Baetcke, J. L. Hoffmann, M. S. Morrow, D. J. Rodier, J. E. Schaeffer, Environmental endocrine disruption: an effects assessment and analysis. Environ. Health Perspect. 1998, 106, 11.| 1:CAS:528:DyaK1cXitlWksb4%3D&md5=6c174449a76fa69e15b19dc724563a96CAS | 9539004PubMed |
[2] H. D. Stensel, C. S. McDowell, E. D. Ritter, An automated biological nitrification toxicity test. J. Water Pollut. Control Fed. 1976, 48, 2343.
| 1:CAS:528:DyaE28XlvVWqtrk%3D&md5=fd909eb5cfa9a782c346f102d92beed8CAS | 994305PubMed |
[3] P. Perez, R. Pulgar, F. Olea-Serrano, M. Villalobos, A. Rivas, M. Metzler, V. Pedraza, N. Olea, The estrogenicity of bisphenol A-related diphenylalkanes with various substituents at the central carbon and the hydroxy groups. Environ. Health Perspect. 1998, 106, 167.
| The estrogenicity of bisphenol A-related diphenylalkanes with various substituents at the central carbon and the hydroxy groups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis1OitrY%3D&md5=e7d3d7282a436218e11b0ac9a3195c8aCAS | 9449681PubMed |
[4] O. Nowak, K. Svardal, Observations on the kinetics of nitrification under inhibiting conditions caused by industrial wastewater compounds. Water Sci. Technol. 1993, 28, 115.
| 1:CAS:528:DyaK2cXmtFGjtw%3D%3D&md5=8a1c37645cda06bff0ce0d96a9b936bcCAS |
[5] L. Zhang, R. Gibble, K. N. Baer, The effects of 4-nonylphenol and ethanol on acute toxicity, embryo development, and reproduction in Daphnia magna. Ecotoxicol. Environ. Saf. 2003, 55, 330.
| The effects of 4-nonylphenol and ethanol on acute toxicity, embryo development, and reproduction in Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVyrsbc%3D&md5=7f06e92990f6830fb9c9b575ba181bd4CAS | 12798767PubMed |
[6] H. Wang, Y. W. Shen, Environmental estrogenic effects of alkylphenol ethoxylates. China Environ. Sci. 1999, 19, 427.
| 1:CAS:528:DyaK1MXnsVSlu7c%3D&md5=176ed6dd0586850406e173cf09a49755CAS |
[7] A. V. Krishnan, P. Stathis, S. F. Permuth, L. Tokes, D. Feldman, Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 1993, 132, 2279.
| Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvFSktrw%3D&md5=e4595b146ebae0b2aa8c1da55ce3f3adCAS | 8504731PubMed |
[8] Z. J. Huang, Production and development of nonylphenol in China. Fine Chemicals 2000, 17, 564.[In Chinese].
[9] N. A. Monteiro-Riviere, J. P. Van Miller, G. Simon, R. L. Joiner, J. D. Brooks, J. E. Riviere, Comparative in vitro percutaneous absorption of nonylphenol and nonylphenol ethoxylates (NPE-4 and NPE-9) through human, porcine and rat skin. Toxicol. Ind. Health 2000, 16, 49.
| 1:CAS:528:DC%2BD3cXjsVSiu78%3D&md5=5a32e8d244e6fc37db2ee8c580418ba1CAS | 10798622PubMed |
[10] K. Sasaki, S. Takatsuki, S. Nemoto, M. Imanaka, S. Eto, E. Murakami, M. Toyoda, Determination of alkylphenols and 2,4-dichlorophenol in foods. Shokuhin Eiseigaku Zasshi 1999, 40, 460.
| Determination of alkylphenols and 2,4-dichlorophenol in foods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1GjsA%3D%3D&md5=dceee8b8e7bf6124a1f840a502b0e017CAS |
[11] G. D. Yadav, N. S. Doshi, Alkylation of phenol with methyl- tert-butyl ether and tert-butanol over solid acids: efficacies of clay-based catalysts. Appl. Catal. A Gen. 2002, 236, 129.
| Alkylation of phenol with methyl- tert-butyl ether and tert-butanol over solid acids: efficacies of clay-based catalysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVGrs7o%3D&md5=03d2b7034fc95ba9f8bf9bcef546f9a9CAS |
[12] T. E. Haavisto, N. A. Adamsson, S. A. Myllymäki, J. Toppari, J. Paranko, Effects of 4- tert-octylphenol, 4- tert-butylphenol, and diethylstilbestrol on prenatal testosterone surge in the rat. Reprod. Toxicol. 2003, 17, 593.
| Effects of 4- tert-octylphenol, 4- tert-butylphenol, and diethylstilbestrol on prenatal testosterone surge in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVOgtLo%3D&md5=dae7b918d14f8ab81a1f6cbb76055bccCAS | 14555198PubMed |
[13] K. Thörneby-Andersson, O. Sterner, C. Hansson, Tyrosinase-mediated formation of a reactive quinone from the depigmenting agents, 4-tert-butylphenol and 4-tert-butylcatechol. Pigment Cell Res. 2000, 13, 33.
| Tyrosinase-mediated formation of a reactive quinone from the depigmenting agents, 4-tert-butylphenol and 4-tert-butylcatechol.Crossref | GoogleScholarGoogle Scholar | 10761994PubMed |
[14] J. R. Ros, J. N. Rodriguez-López, R. Varón, F. García-Cánovas, Kinetics study of the oxidation of 4-tert-butylphenol by tyrosinase. Eur. J. Biochem. 1994, 222, 449.
| Kinetics study of the oxidation of 4-tert-butylphenol by tyrosinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkslOjtL8%3D&md5=8d418dfa192ac8690c7ef5675fa8a22aCAS | 8020482PubMed |
[15] S. R. Konuspaev, K. N. Zhanbekov, N. V. Kui’Kova, D. Y. Murzin, Kinetics of 4-tert-butylphenol hydrogenation over rhodium. Chem. Eng. Technol. 1997, 20, 144.
| Kinetics of 4-tert-butylphenol hydrogenation over rhodium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisVOlsbc%3D&md5=10f662785ba7fbb0e27a4f9d37dc42b0CAS |
[16] W. Kohn, Overview of density fuctional theory, in Density Functional Theory (Eds E. K. U. Gross, R. M. Dreizler) 1995, pp. 3–10 (Plenum Press: New York).
[17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, revision E.01 2004 (Gaussian, Inc.: Wallingford, CT).
[18] Y. Zhao, D. G. Truhlar, Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J. Phys. Chem. A 2004, 108, 6908.
| Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVSnu7w%3D&md5=4f7b112c39e70c162530fa2e98e74766CAS |
[19] W. Hehre, R. Ditchfield, J. Pople, Theoretical investigations on the solvation process. J. Chem. Phys. 1972, 56, 2557.
[20] J. Zheng, Y. Zhao, D. G. Truhlar, The DBH24/08 database and its use to assess electronic structure model chemistries for chemical reaction barrier heights. J. Chem. Theory Comput. 2009, 5, 808.
| The DBH24/08 database and its use to assess electronic structure model chemistries for chemical reaction barrier heights.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFegurw%3D&md5=090a31adaa35f372dfe1bb1e88b51701CAS |
[21] W. H. Miller, Tunneling corrections to unimolecular rate constants, with application to formaldehyde. J. Am. Chem. Soc. 1979, 101, 6810.
| Tunneling corrections to unimolecular rate constants, with application to formaldehyde.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlslKktQ%3D%3D&md5=39dfcc2cf10dbaf12291ca01f32670d0CAS |
[22] Q. Z. Zhang, W. N. Yu, R. X. Zhang, Q. Zhou, R. Gao, W. X. Wang, Quantum chemical and kinetic study on dioxin formation from the 2, 4, 6-TCP and 2, 4-DCP precursors. Environ. Sci. Technol. 2010, 44, 3395.
| Quantum chemical and kinetic study on dioxin formation from the 2, 4, 6-TCP and 2, 4-DCP precursors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVKks7w%3D&md5=eff14066c315cb4a546af592cbf9c9b3CAS |
[23] X. H. Qu, H. Wang, Q. Z. Zhang, X. Y. Shi, F. Xu, W. X. Wang, Mechanistic and kinetic studies on the homogeneous gas-phase formation of PCDD/Fs from 2, 4, 5-trichlorophenol. Environ. Sci. Technol. 2009, 43, 4068.
| Mechanistic and kinetic studies on the homogeneous gas-phase formation of PCDD/Fs from 2, 4, 5-trichlorophenol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlKksrk%3D&md5=003fa7ddd704a0d2487f2d04fc2c68b6CAS |
[24] J. C. Corchado, Y. Y. Chuang, P. L. Fast, W. P. Hu, Y. P. Liu, G. C. Lynch, K. A. Nguyen, C. F. Jackels, A. Fernandez Ramos, B. A. Ellingson, B. J. Lynch, J. Zheng, V. S. Melissas, J. Villà, I. Rossi, E. L. Coitiño, J. Pu, T. Albu, R. Steckler, B. C. Garrett, A. D. Isaacson, D. G. Truhlar, POLYRATE version 9.7 2007 (University of Minnesota: Minneapolis, MN).
[25] W. W. Brubaker, R. A. Hites, OH reaction kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and dibenzofurans. J. Phys. Chem. A 1998, 102, 915.
| OH reaction kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and dibenzofurans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkt1yhtQ%3D%3D&md5=e0fcabbdd18c71c08e00fc99b9958d8aCAS |
[26] E. C. Tuazon, R. Atkinson, A product study of the gas-phase reaction of Methacrolein with the OH radical in the presence of NOx. Int. J. Chem. Kinet. 1990, 22, 591.
| A product study of the gas-phase reaction of Methacrolein with the OH radical in the presence of NOx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvFKrtL4%3D&md5=a2e0991277f911e9a145701c269c2a0fCAS |
[27] R. I. Olariu, B. Klotz, I. Barnes, K. H. Becker, R. Mocanu, FT–IR study of the ring-retaining products from the reaction of OH radicals with phenol, o-, m-, and p-cresol. Atmos. Environ. 2002, 36, 3685.
| FT–IR study of the ring-retaining products from the reaction of OH radicals with phenol, o-, m-, and p-cresol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVSntLc%3D&md5=f44e5be7355705fbfca612c9403217d4CAS |
[28] K. Fukui, T. Yonezawa, H. Shingu, A molecular orbital theory of reactivity in aromatic hydrocarbons. J. Chem. Phys. 1952, 20, 722.
| A molecular orbital theory of reactivity in aromatic hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XmsVensA%3D%3D&md5=2001df323800a658bcfa084fd9a99c67CAS |
[29] B. Bohn, Formation of peroxy radicals from OH-toluene adducts and O2. J. Phys. Chem. A 2001, 105, 6092.
| Formation of peroxy radicals from OH-toluene adducts and O2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVCmu7c%3D&md5=d8f65d84fdc87ead7e8927508bd118e2CAS |
[30] G. Boocock, R. J. Cvetanović, Reaction of oxygen atoms with benzene. Can. J. Chem. 1961, 39, 2436.
| Reaction of oxygen atoms with benzene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XksFOitA%3D%3D&md5=04da8f3c8b669df563d8a878eaacd7c8CAS |