Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Identification of water-soluble organic carbon in non-urban aerosols using ultrahigh-resolution FT-ICR mass spectrometry: organic anions

Lynn R. Mazzoleni A B E , Parichehr Saranjampour A , Megan M. Dalbec C , Vera Samburova D , A. Gannet Hallar D , Barbara Zielinska D , Douglas H. Lowenthal D and Steve Kohl D
+ Author Affiliations
- Author Affiliations

A Michigan Technological University, Department of Chemistry, Houghton, MI 49931, USA.

B Michigan Technological University, Atmospheric Sciences Program, Houghton, MI 49931, USA.

C Michigan Technological University, Department of Civil and Environmental Engineering, Houghton, MI 49931, USA.

D Desert Research Institute, Division of Atmospheric Science, Reno, NV 89512, USA.

E Corresponding author. Email: lrmazzol@mtu.edu

Environmental Chemistry 9(3) 285-297 https://doi.org/10.1071/EN11167
Submitted: 21 December 2011  Accepted: 13 April 2012   Published: 20 June 2012

Environmental context. Aerosol water-soluble organic carbon is a complex mixture of thousands of organic compounds which may have a significant influence on the climate-relevant properties of atmospheric aerosols. Using ultrahigh resolution mass spectrometry, more than 4000 individual molecular formulas were identified in non-urban aerosol water-soluble organic carbon. A significant fraction of the assigned molecular formulas were matched to assigned molecular formulas of laboratory generated secondary organic aerosols.

Abstract. Water-soluble organic carbon (WSOC) is a complex mixture of thousands of organic compounds which may have significant influence on the climate-relevant properties of atmospheric aerosols. An improved understanding of the molecular composition of WSOC is needed to evaluate the effect of aerosol composition upon aerosol physical properties. In this work, ultrahigh-resolution Fourier transform–ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterise aerosol WSOC collected during the summer of 2010 at the Storm Peak Laboratory (3210 m ASL) near Steamboat Springs, CO. Approximately 4000 molecular formulas were assigned in the mass range of 100–800 Da after negative-ion electrospray ionisation and more than 50 % of them contained nitrogen or sulfur. The double bond equivalents (DBEs) of the molecular formulas were inversely proportional to the O : C ratio, despite a relatively constant H : C ratio of ~1.5. Despite the range of DBE values, the elemental ratios and the high number of oxygen atoms per formula indicate that a majority of the compounds are aliphatic to olefinic in nature. These trends indicate significant non-oxidative accretion reaction pathways for the formation of high molecular weight WSOC components. In addition, a significant number of molecular formulas assigned in this work matched those previously identified as secondary organic aerosol components of monoterpene and sesquiterpene ozonolysis.

Additional keywords : atmospheric organic matter, electrospray ionisation, FT-ICR MS, high-resolution MS, humic-like substances, nitrooxy organosulfates, organonitrates, organosulfates, secondary organic aerosol.


References

[1]  M. Kanakidou, J. H. Seinfeld, S. N. Pandis, I. Barnes, F. J. Dentener, M. C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C. J. Nielsen, E. Swietlicki, J. P. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G. K. Moortgat, R. Winterhalter, C. E. L. Myhre, K. Tsigaridis, E. Vignati, E. G. Stephanou, J. Wilson, Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 2005, 5, 1053.
Organic aerosol and global climate modelling: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyrtbw%3D&md5=0b28a8d31bcdc89aefbae127bbbe1c32CAS |

[2]  P. Saxena, L. M. Hildemann, Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. J. Atmos. Chem. 1996, 24, 57.
Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjtlymurw%3D&md5=4eb539c4a51a781a9688c8349d4e46b1CAS |

[3]  Y. Rudich, N. M. Donahue, T. F. Mentel, Aging of organic aerosol: bridging the gap between laboratory and field studies. Annu. Rev. Phys. Chem. 2007, 58, 321.
Aging of organic aerosol: bridging the gap between laboratory and field studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslSitrY%3D&md5=cb2d434e283350e33e24f2626d7c984bCAS |

[4]  U. Pöschl, Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. Engl. 2005, 44, 7520.
Atmospheric aerosols: composition, transformation, climate and health effects.Crossref | GoogleScholarGoogle Scholar |

[5]  M. Hallquist, J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, J. F. Hamilton, H. Herrmann, T. Hoffmann, Y. Iinuma, M. Jang, M. E. Jenkin, J. L. Jimenez, A. Kiendler-Scharr, W. Maenhaut, G. McFiggans, T. F. Mentel, A. Monod, A. S. H. Prevot, J. H. Seinfeld, J. D. Surratt, R. Szmigielski, J. Wildt, The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155.
The formation, properties and impact of secondary organic aerosol: current and emerging issues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhs77M&md5=0437ae491e64eca2afaa26d3b70e085eCAS |

[6]  B. Ervens, B. J. Turpin, R. J. Weber, Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos. Chem. Phys. 2011, 11, 11069.
Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFOisLw%3D&md5=9f723358d623ab0c35e88c0e24927658CAS |

[7]  E. R. Graber, Y. Rudich, Atmospheric HULIS: how humic-like are they? A comprehensive and critical review. Atmos. Chem. Phys. 2006, 6, 729.
Atmospheric HULIS: how humic-like are they? A comprehensive and critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltV2jtLg%3D&md5=0074ab99e5455ae9389439b055531c2dCAS |

[8]  N. Havers, P. Burba, J. Lambert, D. Klockow, Spectroscopic characterization of humic-like substances in airborne particulate matter. J. Atmos. Chem. 1998, 29, 45.
Spectroscopic characterization of humic-like substances in airborne particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFKqs7c%3D&md5=ca840b7d19fe24c9cef3c126b61f96b6CAS |

[9]  P. Herckes, J. A. Leenheer, J. L. Collett, Comprehensive characterization of atmospheric organic matter in Fresno, California fog water. Environ. Sci. Technol. 2007, 41, 393.
Comprehensive characterization of atmospheric organic matter in Fresno, California fog water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yrtrfM&md5=3459e83d0fff67f734c099a1ce5a6064CAS |

[10]  A. P. Sullivan, R. J. Weber, Chemical characterization of the ambient organic aerosol soluble in water: 1. Isolation of hydrophobic and hydrophilic fractions with a XAD-8 resin. J. Geophys. Res. – Atmos. 2006, 111, D05314.
Chemical characterization of the ambient organic aerosol soluble in water: 1. Isolation of hydrophobic and hydrophilic fractions with a XAD-8 resin.Crossref | GoogleScholarGoogle Scholar |

[11]  A. P. Sullivan, R. J. Weber, Chemical characterization of the ambient organic aerosol soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size-exclusion chromatography. J. Geophys. Res. – Atmos. 2006, 111, D05315.
Chemical characterization of the ambient organic aerosol soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size-exclusion chromatography.Crossref | GoogleScholarGoogle Scholar |

[12]  V. Samburova, R. Zenobi, M. Kalberer, Characterization of high molecular weight compounds in urban atmospheric particles. Atmos. Chem. Phys. 2005, 5, 2163.
Characterization of high molecular weight compounds in urban atmospheric particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Kgs7jI&md5=21fc80d598ac4bdf3dc0f8b48d82c86cCAS |

[13]  Z. Krivácsy, G. Kiss, B. Varga, I. Galambos, Z. Sárvári, A. Gelencsér, Á. Molnár, S. Fuzzi, M. C. Facchini, S. Zappoli, A. Andracchio, T. Alsberg, H. C. Hansson, L. Persson, Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis. Atmos. Environ. 2000, 34, 4273.
Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis.Crossref | GoogleScholarGoogle Scholar |

[14]  A. Limbeck, M. Handler, B. Neuberger, B. Klatzer, H. Puxbaum, Carbon-specific analysis of humic-like substances in atmospheric aerosol and precipitation samples. Anal. Chem. 2005, 77, 7288.
Carbon-specific analysis of humic-like substances in atmospheric aerosol and precipitation samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVymu7fK&md5=d5e301c7513671623c0a4214f3cc8064CAS |

[15]  T. Feczko, H. Puxbaum, A. Kasper-Giebl, M. Handler, A. Limbeck, A. Gelencsér, C. Pio, S. Preunkert, M. Legrand, Determination of water and alkaline extractable atmospheric humic-like substances with the TU Vienna HULIS analyzer in samples from six background sites in Europe. J. Geophys. Res. – Atmos. 2007, 112, D23S10.
Determination of water and alkaline extractable atmospheric humic-like substances with the TU Vienna HULIS analyzer in samples from six background sites in Europe.Crossref | GoogleScholarGoogle Scholar |

[16]  T. Reemtsma, Determination of molecular formulas of natural organic matter molecules by (ultra-) high-resolution mass spectrometry Status and needs. J. Chromatogr. A 2009, 1216, 3687.
Determination of molecular formulas of natural organic matter molecules by (ultra-) high-resolution mass spectrometry Status and needs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkt1SmtLY%3D&md5=c1073e14589c66afcdf937e0fb948185CAS |

[17]  Z. Krivácsy, G. Kiss, D. Ceburnis, G. Jennings, W. Maenhaut, I. Salma, D. Shooter, Study of water-soluble atmospheric humic matter in urban and marine environments. Atmos. Res. 2008, 87, 1.
Study of water-soluble atmospheric humic matter in urban and marine environments.Crossref | GoogleScholarGoogle Scholar |

[18]  C. Baduel, D. Voisin, J. L. Jaffrezo, Comparison of analytical methods for humic like substances (HULIS) measurements in atmospheric particles. Atmos. Chem. Phys. 2009, 9, 5949.
Comparison of analytical methods for humic like substances (HULIS) measurements in atmospheric particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1eisbjK&md5=e78ea48ce66711e74e1ad7ebb8923364CAS |

[19]  Y. Iinuma, H. Herrmann, C. Muller, T. Berndt, O. Boge, M. Claeys, Evidence for the existence of organosulfates from beta-pinene ozonolysis in ambient secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 6678.
Evidence for the existence of organosulfates from beta-pinene ozonolysis in ambient secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVCntLo%3D&md5=ee5b0887594bf9e8f467cab9f1b8db9bCAS |

[20]  J. P. LeClair, J. L. Collett, L. R. Mazzoleni, Fragmentation analysis of water-soluble atmospheric organic matter using ultrahigh-resolution mass spectrometry. Environ. Sci. Technol. 2012, 46, 4312.
Fragmentation analysis of water-soluble atmospheric organic matter using ultrahigh-resolution mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1ehsb4%3D&md5=b18e92a5ff6018b1579aff5219c7e417CAS |

[21]  P. Schmitt-Kopplin, A. Gelencsér, E. Dabek-Zlotorzynska, G. Kiss, N. Hertkorn, M. Harir, Y. Hong, I. Gebefugi, Analysis of the unresolved organic fraction in atmospheric aerosols with ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy: organosulfates as photochemical smog constituents. Anal. Chem. 2010, 82, 8017.
Analysis of the unresolved organic fraction in atmospheric aerosols with ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy: organosulfates as photochemical smog constituents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WmtrrF&md5=613f7fbe488a40ff63ba16a80ffad23fCAS |

[22]  M. P. Tolocka, M. Jang, J. M. Ginter, F. J. Cox, R. M. Kamens, M. V. Johnston, Formation of oligomers in secondary organic aerosol. Environ. Sci. Technol. 2004, 38, 1428.
Formation of oligomers in secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVaksw%3D%3D&md5=39d6005e2a1632eb23b5eab659065652CAS |

[23]  K. J. Heaton, R. L. Sleighter, P. G. Hatcher, W. A. t. Hall, M. V. Johnston, Composition domains in monoterpene secondary organic aerosol. Environ. Sci. Technol. 2009, 43, 7797.
Composition domains in monoterpene secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWqt7nE&md5=6bb43ea55bf8758caa14c121ac6e7339CAS |

[24]  A. Reinhardt, C. Emmenegger, B. Gerrits, C. Panse, J. Dommen, U. Baltensperger, R. Zenobi, M. Kalberer, Ultrahigh mass resolution and accurate mass measurements as a tool to characterize oligomers in secondary organic aerosols. Anal. Chem. 2007, 79, 4074.
Ultrahigh mass resolution and accurate mass measurements as a tool to characterize oligomers in secondary organic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFKgtrg%3D&md5=1f0e0e2302019639a9a7539163b8022dCAS |

[25]  K. J. Heaton, M. A. Dreyfus, S. Wang, M. V. Johnston, Oligomers in the early stage of biogenic secondary organic aerosol formation and growth. Environ. Sci. Technol. 2007, 41, 6129.
Oligomers in the early stage of biogenic secondary organic aerosol formation and growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlOjsbY%3D&md5=0e88aaf4d33dcda61244142f7cf66bd9CAS |

[26]  A. L. Putman, J. H. Offenberg, R. Fisseha, S. Kundu, T. A. Rahn, L. R. Mazzoleni, Ultrahigh-resolution FT-ICR mass spectrometry characterization of α-pinene ozonolysis SOA. Atmos. Environ. 2012, 46, 164.
Ultrahigh-resolution FT-ICR mass spectrometry characterization of α-pinene ozonolysis SOA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGks73J&md5=af3663014c3e66c08d7df9888de6db73CAS |

[27]  M. L. Walser, Y. Desyaterik, J. Laskin, A. Laskin, S. A. Nizkorodov, High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene. Phys. Chem. Chem. Phys. 2008, 10, 1009.
High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Ors7g%3D&md5=2025e849d57262d01984bc2ed8cd7674CAS |

[28]  A. P. Bateman, S. A. Nizkorodov, J. Laskin, A. Laskin, Time-resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry. Phys. Chem. Chem. Phys. 2009, 11, 7931.
Time-resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOrsLzE&md5=3bc460da894e3ee5b3442588a35d37b3CAS |

[29]  S. Kundu, R. Fisseha, A. L. Putman, T. A. Rahn, L. R. Mazzoleni, High molecular weight SOA formation during limonene ozonolysis: insights from ultrahigh-resolution FT-ICR mass spectrometry characterization. Atmos. Chem. Phys. in press.

[30]  J. D. Surratt, S. M. Murphy, J. H. Kroll, N. L. Ng, L. Hildebrandt, A. Sorooshian, R. Szmigielski, R. Vermeylen, W. Maenhaut, M. Claeys, R. C. Flagan, J. H. Seinfeld, Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene. J. Phys. Chem. A 2006, 110, 9665.
Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFGjsbs%3D&md5=9fd8b39924cb4ff67d5435ef6d4cb1d2CAS |

[31]  T. B. Nguyen, A. P. Bateman, D. L. Bones, S. A. Nizkorodov, J. Laskin, A. Laskin, High-resolution mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene. Atmos. Environ. 2010, 44, 1032.
High-resolution mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Srsrk%3D&md5=dd54e909a0a5e347f265f763b6dae43cCAS |

[32]  D. L. Bones, D. K. Henricksen, S. A. Mang, M. Gonsior, A. P. Bateman, T. B. Nguyen, W. J. Cooper, S. A. Nizkorodov, Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales. J. Geophys. Res. – Atmos. 2010, 115, D05203.
Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales.Crossref | GoogleScholarGoogle Scholar |

[33]  J. Laskin, A. Laskin, P. J. Roach, G. W. Slysz, G. A. Anderson, S. A. Nizkorodov, D. L. Bones, L. Q. Nguyen, High-resolution desorption electrospray ionization mass spectrometry for chemical characterization of organic aerosols. Anal. Chem. 2010, 82, 2048.
High-resolution desorption electrospray ionization mass spectrometry for chemical characterization of organic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvVKjurg%3D&md5=e23993c21f6afd6cffcfdd756945991eCAS |

[34]  E. L. Shapiro, J. Szprengiel, N. Sareen, C. N. Jen, M. R. Giordano, V. F. McNeill, Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics. Atmos. Chem. Phys. 2009, 9, 2289.
Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVGjtL0%3D&md5=8ec613c1862dde3010359e00e00208baCAS |

[35]  N. Sareen, A. N. Schwier, E. L. Shapiro, D. Mitroo, V. F. McNeill, Secondary organic material formed by methylglyoxal in aqueous aerosol mimics. Atmos. Chem. Phys. 2010, 10, 997.
Secondary organic material formed by methylglyoxal in aqueous aerosol mimics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsl2rtLo%3D&md5=c9c6ed9e04fa6231d72d2452eccbbab5CAS |

[36]  G. Yu, A. R. Bayer, M. M. Galloway, K. J. Korshavn, C. G. Fry, F. N. Keutsch, Glyoxal in aqueous ammonium sulfate solutions: products, kinetics and hydration effects. Environ. Sci. Technol. 2011, 45, 6336.
Glyoxal in aqueous ammonium sulfate solutions: products, kinetics and hydration effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlais7s%3D&md5=227fb4e4fc9524276665dd4dac31b14bCAS |

[37]  L. R. Mazzoleni, B. M. Ehrmann, X. H. Shen, A. G. Marshall, J. L. Collett, Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol. 2010, 44, 3690.
Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVaiu7o%3D&md5=f2df57988217a3fa1940176ccaa4f8dfCAS |

[38]  B. Varga, G. Kiss, I. Ganszky, A. Gelencsér, Z. Krivácsy, Isolation of water-soluble organic matter from atmospheric aerosol. Talanta 2001, 55, 561.
Isolation of water-soluble organic matter from atmospheric aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFSiu7Y%3D&md5=1bd55dd89ac43a4b1d3df5f1fe6365dcCAS |

[39]  A. P. Sullivan, R. J. Weber, A. L. Clements, J. R. Turner, M. S. Bae, J. J. Schauer, A method for on-line measurement of water-soluble organic carbon in ambient aerosol particles: results from an urban site. Geophys. Res. Lett. 2004, 31, L13105.
A method for on-line measurement of water-soluble organic carbon in ambient aerosol particles: results from an urban site.Crossref | GoogleScholarGoogle Scholar |

[40]  A. Hecobian, X. Zhang, M. Zheng, N. Frank, E. S. Edgerton, R. J. Weber, Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmos. Chem. Phys. 2010, 10, 5965.
Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKltrbF&md5=7c87c122d58a95b249c22f9f9a7ecd68CAS |

[41]  A. G. Marshall, C. L. Hendrickson, G. S. Jackson, Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 1998, 17, 1.
Fourier transform ion cyclotron resonance mass spectrometry: a primer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsFantbk%3D&md5=e88326729ce30a839506f9eb6e52ca2fCAS |

[42]  E. B. Kujawinski, Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS): characterization of complex environmental mixtures. Environ. Forensics 2002, 3, 207.
| 1:CAS:528:DC%2BD38XptlCns7o%3D&md5=80e01d1081e7280bb9f8a4df7144ed45CAS |

[43]  A. P. Bateman, S. A. Nizkorodov, J. Laskin, A. Laskin, High-resolution electrospray ionization mass spectrometry analysis of water-soluble organic aerosols collected with a particle into liquid sampler. Anal. Chem. 2010, 82, 8010.
High-resolution electrospray ionization mass spectrometry analysis of water-soluble organic aerosols collected with a particle into liquid sampler.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2ktLrF&md5=641121cf5c92aadf38784e4e8fddfc99CAS |

[44]  K. E. Altieri, S. P. Seitzinger, A. G. Carlton, B. J. Turpin, G. C. Klein, A. G. Marshall, Oligomers formed through in-cloud methylglyoxal reactions: chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry. Atmos. Environ. 2008, 42, 1476.
Oligomers formed through in-cloud methylglyoxal reactions: chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFymurs%3D&md5=c9b7f31bff2765160673dc4084109d9cCAS |

[45]  T. Reemtsma, A. These, P. Venkatachari, X. Y. Xia, P. K. Hopke, A. Springer, M. Linscheid, Identification of fulvic acids and sulfated and nitrated analogues in atmospheric aerosol by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2006, 78, 8299.
Identification of fulvic acids and sulfated and nitrated analogues in atmospheric aerosol by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Sjtb7I&md5=5a1eabc2bc82904c1740c9d3e7e20768CAS |

[46]  A. S. Wozniak, J. E. Bauer, R. L. Sleighter, R. M. Dickhut, P. G. Hatcher, Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Atmos. Chem. Phys. 2008, 8, 5099.
Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCntbbF&md5=b7c276c2bc6dfaf81e28aa390a128fd4CAS |

[47]  K. E. Altieri, B. J. Turpin, S. P. Seitzinger, Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry. Atmos. Chem. Phys. 2009, 9, 2533.
Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVGjtbc%3D&md5=b23507f2b8bca3c1b667f4d129b43782CAS |

[48]  M. N. Chan, J. D. Surratt, A. W. H. Chan, K. Schilling, J. H. Offenberg, M. Lewandowski, E. O. Edney, T. E. Kleindienst, M. Jaoui, E. S. Edgerton, R. L. Tanner, S. L. Shaw, M. Zheng, E. M. Knipping, J. H. Seinfeld, Influence of aerosol acidity on the chemical composition of secondary organic aerosol from beta-caryophyllene. Atmos. Chem. Phys. 2011, 11, 1735.
Influence of aerosol acidity on the chemical composition of secondary organic aerosol from beta-caryophyllene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFyltbw%3D&md5=2303290548e409b401e9eca74e355461CAS |

[49]  B. Nozière, S. Ekström, T. Alsberg, S. Holmström, Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols. Geophys. Res. Lett. 2010, 37, L05806.
Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols.Crossref | GoogleScholarGoogle Scholar |

[50]  A. C. Stenson, A. G. Marshall, W. T. Cooper, Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra. Anal. Chem. 2003, 75, 1275.
Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsFKhtg%3D%3D&md5=98cde3dc1ab1937d482b401f9986e497CAS |

[51]  R. L. Sleighter, G. A. McKee, Z. Liu, P. G. Hatcher, Naturally present fatty acids as internal calibrants for Fourier transform mass spectra of dissolved organic matter. Limnol. Oceanogr. Methods 2008, 6, 246.
Naturally present fatty acids as internal calibrants for Fourier transform mass spectra of dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOnt7jJ&md5=e45499c35eded5a17f34bc2209784d86CAS |

[52]  G. T. Blakney, C. L. Hendrickson, A. G. Marshall, Predator data station: a fast data acquisition system for advanced FT-ICR MS experiments. Int. J. Mass Spectrom. 2011, 306, 246.
Predator data station: a fast data acquisition system for advanced FT-ICR MS experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFehsbbP&md5=5c711ecdfb393e8622bfc479b32fdc98CAS |

[53]  C. A. Hughey, C. L. Hendrickson, R. P. Rodgers, A. G. Marshall, K. N. Qian, Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal. Chem. 2001, 73, 4676.
Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtlWisbo%3D&md5=2d986abc66bd3ce506269b7f0b368dfeCAS |

[54]  B. P. Koch, M. R. Witt, R. Engbrodt, T. Dittmar, G. Kattner, Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Geochim. Cosmochim. Acta 2005, 69, 3299.
Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvV2ksr4%3D&md5=555dccca38c04fd085c9beaf3cdea0f4CAS |

[55]  S. J. Gaskell, Electrospray: principles and practice. J. Mass Spectrom. 1997, 32, 677.
Electrospray: principles and practice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvFCnsLc%3D&md5=6517748f18e51d838d0703f7e10d9545CAS |

[56]  E. B. Kujawinski, M. D. Behn, Automated analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra of natural organic matter. Anal. Chem. 2006, 78, 4363.
Automated analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra of natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVCgtrY%3D&md5=e94d6e11b5609ef750773466f5953cf4CAS |

[57]  N. Hertkorn, M. Frommberger, M. Witt, B. P. Koch, P. Schmitt-Kopplin, E. M. Perdue, Natural organic matter and the event horizon of mass spectrometry. Anal. Chem. 2008, 80, 8908.
Natural organic matter and the event horizon of mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSnurrO&md5=d38e1ed014a353793b0d12527ee51b87CAS |

[58]  Z. G. Wu, R. P. Rodgers, A. G. Marshall, Two- and three-dimensional van Krevelen diagrams: a graphical analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier transform ion cyclotron resonance mass measurements. Anal. Chem. 2004, 76, 2511.
Two- and three-dimensional van Krevelen diagrams: a graphical analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier transform ion cyclotron resonance mass measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVyisr0%3D&md5=3fa0623c918203a59594261f3bc39cdeCAS |

[59]  R. L. Sleighter, P. G. Hatcher, The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter. J. Mass Spectrom. 2007, 42, 559.
The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVWrt7s%3D&md5=275a99d63e1b6922248381dbfec4529fCAS |

[60]  S. Kim, R. W. Kramer, P. G. Hatcher, Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. Anal. Chem. 2003, 75, 5336.
Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1OhsrY%3D&md5=3931757d6be1a7489e7577cec8e436b7CAS |

[61]  A. S. Wozniak, J. E. Bauer, R. L. Sleighter, R. M. Dickhut, P. G. Hatcher, Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Atmos. Chem. Phys. 2008, 8, 5099.
Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCntbbF&md5=b7c276c2bc6dfaf81e28aa390a128fd4CAS |

[62]  T. Reemtsma, A. These, P. Venkatachari, X. Xia, P. K. Hopke, A. Springer, M. Linscheid, Identification of fulvic acids and sulfated and nitrated analogues in atmospheric aerosol by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2006, 78, 8299.
Identification of fulvic acids and sulfated and nitrated analogues in atmospheric aerosol by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Sjtb7I&md5=5a1eabc2bc82904c1740c9d3e7e20768CAS |

[63]  S. Decesari, M. C. Facchini, E. Matta, F. Lettini, M. Mircea, S. Fuzzi, E. Tagliavini, J. P. Putaud, Chemical features and seasonal variation of fine aerosol water-soluble organic compounds in the Po Valley, Italy. Atmos. Environ. 2001, 35, 3691.
Chemical features and seasonal variation of fine aerosol water-soluble organic compounds in the Po Valley, Italy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks1arurc%3D&md5=cafd5eac0bd4b28e07e65fec96fa6654CAS |

[64]  V. Samburova, T. Didenko, E. Kunenkov, C. Emmenegger, R. Zenobi, M. Kalberer, Functional group analysis of high-molecular weight compounds in the water-soluble fraction of organic aerosols. Atmos. Environ. 2007, 41, 4703.
Functional group analysis of high-molecular weight compounds in the water-soluble fraction of organic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVWht70%3D&md5=ec66739cb2c920e3c7010165ea561c78CAS |

[65]  R. L. Sleighter, P. G. Hatcher, Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar. Chem. 2008, 110, 140.
Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFahsrw%3D&md5=94e71fd9c25fb254f0a004f4b56ecb0aCAS |

[66]  F. W. McLafferty, F. Turecek, Interpretation of Mass Spectra, 4th edn 1993 (University Science Books: Sausalito, CA).

[67]  S. Decesari, M. C. Facchini, S. Fuzzi, E. Tagliavini, Characterization of water-soluble organic compounds in atmospheric aerosol: a new approach. J. Geophys. Res. – Atmos. 2000, 105 (D1), 1481.
Characterization of water-soluble organic compounds in atmospheric aerosol: a new approach.Crossref | GoogleScholarGoogle Scholar |

[68]  B. P. Koch, T. Dittmar, From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom. 2006, 20, 926.
From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitlGgs74%3D&md5=0cab8721cc4433b4c2eaa5d48df28338CAS |

[69]  H. S. El-Zanan, D. H. Lowenthal, B. Zielinska, J. C. Chow, N. Kumar, Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples. Chemosphere 2005, 60, 485.
Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFClsL0%3D&md5=3f4755d458a149e891e7fd1bdce3449dCAS |

[70]  H. S. El-Zanan, B. Zielinska, L. R. Mazzoleni, D. A. Hansen, Analytical determination of the aerosol organic mass-to-organic carbon ratio. J. Air Waste Manage. Assoc. 2009, 59, 58.
Analytical determination of the aerosol organic mass-to-organic carbon ratio.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVKku7s%3D&md5=cd1e9602477ed25c3844fab2bfedb10dCAS |

[71]  D. Helmig, J. Ortega, T. Duhl, D. Tanner, A. Guenther, P. Harley, C. Wiedinmyer, J. Milford, T. Sakulyanontvittaya, Sesquiterpene emissions from pine trees – identifications, emission rates and flux estimates for the contiguous United States. Environ. Sci. Technol. 2007, 41, 1545.
Sesquiterpene emissions from pine trees – identifications, emission rates and flux estimates for the contiguous United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVensg%3D%3D&md5=e948f8375895cbd31f51fefa5523bdddCAS |

[72]  Y. G. Shu, R. Atkinson, Rate constants for the gas-phase reactions of O3 with a series of terpenes and OH radical formation from the O3 reactions with sesquiterpenes at 296 ± 2 K. Int. J. Chem. Kinet. 1994, 26, 1193.
Rate constants for the gas-phase reactions of O3 with a series of terpenes and OH radical formation from the O3 reactions with sesquiterpenes at 296 ± 2 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitF2ksb8%3D&md5=833d040f15529ee9d6397522ed5a72f5CAS |

[73]  Y. H. Shu, R. Atkinson, Atmospheric lifetimes and fates of a series of sesquiterpenes. J. Geophys. Res. – Atmos. 1995, 100, 7275.
Atmospheric lifetimes and fates of a series of sesquiterpenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmt1Chsbc%3D&md5=5c0606d679e16ef605dafcda4e728eb3CAS |

[74]  R. J. Griffin, D. R. Cocker, R. C. Flagan, J. H. Seinfeld, Organic aerosol formation from the oxidation of biogenic hydrocarbons. J. Geophys. Res. – Atmos. 1999, 104 (D3), 3555.
Organic aerosol formation from the oxidation of biogenic hydrocarbons.Crossref | GoogleScholarGoogle Scholar |

[75]  M. Jaoui, S. Leungsakul, R. M. Kamens, Gas and particle products distribution from the reaction of beta-caryophyllene with ozone. J. Atmos. Chem. 2003, 45, 261.
Gas and particle products distribution from the reaction of beta-caryophyllene with ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Cnt7w%3D&md5=7e6442b3cc44524dd926f5e6c2b28a75CAS |

[76]  J. D. Surratt, Y. Gomez-Gonzalez, A. W. H. Chan, R. Vermeylen, M. Shahgholi, T. E. Kleindienst, E. O. Edney, J. H. Offenberg, M. Lewandowski, M. Jaoui, W. Maenhaut, M. Claeys, R. C. Flagan, J. H. Seinfeld, Organosulfate formation in biogenic secondary organic aerosol. J. Phys. Chem. A 2008, 112, 8345.
Organosulfate formation in biogenic secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFOgsrw%3D&md5=8ed1709bc00dac5ed4673e4b498bad19CAS |

[77]  J. H. Kroll, J. H. Seinfeld, Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 2008, 42, 3593.
Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Kksbs%3D&md5=e4081486255a7e6de6be34deb1620aecCAS |

[78]  A. G. Hallar, D. H. Lowenthal, G. Chirokova, R. D. Borys, C. Wiedinmyer, Persistent daily new particle formation at a mountain-top location. Atmos. Environ. 2011, 45, 4111.
Persistent daily new particle formation at a mountain-top location.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFOru7w%3D&md5=03a3f675272a5d9d1ab4e8fbc9814014CAS |