Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Ionic strength- and pH-dependence of calcium binding by terrestrial humic acids

Iso Christl
+ Author Affiliations
- Author Affiliations

Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätstrasse 16, CH-8092 Zürich, Switzerland. Email: iso.christl@env.ethz.ch

Environmental Chemistry 9(1) 89-96 https://doi.org/10.1071/EN11112
Submitted: 7 September 2011  Accepted: 2 December 2011   Published: 23 February 2012

Environmental context. In terrestrial environments, humic substances act as major sorbents for calcium, which is an essential nutrient for organisms. This study shows that calcium binding by terrestrial humic acids is strongly dependent on pH and ionic strength. The results indicate that calcium binding by humic acids is primarily controlled by electrostatic forces and specific binding to carboxylic groups.

Abstract. Calcium binding by two terrestrial humic acids was investigated at 25 °C as a function of pH, ionic strength and Ca2+ activity with calcium titration experiments. A Ca2+-selective electrode was used for Ca2+ measurements to cover a wide range of Ca2+ activities (10–8.5–10–2.5). Experimental data were quantitatively described with the NICA–Donnan model accounting for electrostatic and specific calcium binding. The results showed that calcium binding as a function of Ca2+ activity was strongly affected by variations of pH and ionic strength indicating that electrostatic binding is an important mechanism for calcium binding by humic acids. Data modelling providing a good description of experimental data for both humic acids suggested that electrostatic binding was the dominant calcium binding mechanisms at high Ca2+ activities often observed in terrestrial environments. Specific calcium binding being quantitatively predominant only at low Ca2+ activities was exclusively attributed to binding sites exhibiting a weak affinity for protons considered to represent mainly carboxylic groups. Since the negative charge of the humic acids being prerequisite for electrostatic calcium binding was found to be mainly due to deprotonation of carboxylic groups except under alkaline conditions, carboxylic groups were identified to primarily control calcium binding of humic acids.

Additional keywords: carboxylic groups, electrostatic binding, NICA–Donnan model, specific binding.


References

[1]  E. Tipping, Cation Binding by Humic Substances 2002 (Cambridge University Press: Cambridge, UK).

[2]  S. M. Bernasconi, A. Bauder, B. Bourdon, I. Brunner, E. Bünemann, I. Christl, N. Derungs, P. Edwards, D. Farinotti, B. Frey, et al. Chemical and biological gradients along the Damma glacier soil chronosequence, Switzerland. Vadose Zone J. 2011, 10, 867.
Chemical and biological gradients along the Damma glacier soil chronosequence, Switzerland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWkurfI&md5=0e9fd29128ce33c10e354f9279005e2cCAS |

[3]  F. J. Stevenson, Humus Chemistry. Genesis, Composition, Reactions 1994 (Wiley: New York).

[4]  R. G. Pearson, Hard and soft acids and bases J. Am. Chem. Soc. 1963, 85, 3533.
Hard and soft acids and basesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXksV0%3D&md5=13a572848ac3a95ad7bc8e9048520cd4CAS |

[5]  R. G. Pearson, Hard and soft acids and bases, HSAB, Part I. Fundamental principles. J. Chem. Educ. 1968, 45, 581.
Hard and soft acids and bases, HSAB, Part I. Fundamental principles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXltVShs74%3D&md5=364847f4bfab5911ff8a7c58b95f02e2CAS |

[6]  A. E. Martell, R. M. Smith, R. J. Motekaitis, NIST Critically Selected Stability Constants of Metal Complexes 2004 (National Institute of Standards and Technology: Gaithersburg, MD).

[7]  M. E. Essington, Soil and Water Chemistry: An Integrative Approach 2004 (CRC Press: Boca Raton, FL).

[8]  D. S. Smith, R. A. Bell, J. R. Kramer, Metal speciation in natural waters with emphasis on reduced sulfur groups as strong metal binding sites. Comp. Biochem. Physiol. C 2002, 133, 65.

[9]  W. Stumm, J. J. Morgan, Aquatic Chemistry 1996 (Wiley: New York).

[10]  C. J. Milne, D. G. Kinniburgh, W. H. van Riemsdijk, E. Tipping, Generic NICA–Donnan model parameters for metal-ion binding by humic substances. Environ. Sci. Technol. 2003, 37, 958.
Generic NICA–Donnan model parameters for metal-ion binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVWgsQ%3D%3D&md5=6b8bf6fd9ce41782fb66668b1d5ab5ccCAS |

[11]  E. Tipping, S. Lofts, J. E. Sonke, Humic ion-binding Model VII: a revised parameterisation of cation-binding by humic substances. Environ. Chem. 2011, 8, 225.
Humic ion-binding Model VII: a revised parameterisation of cation-binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVWrsL0%3D&md5=dc5bbdc3aa7c8b3678f6540c7c09481fCAS |

[12]  D. G. Kinniburgh, W. H. van Riemsdijk, L. K. Koopal, M. Borkovec, M. F. Benedetti, M. J. Avena, Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Coll. Surf. A 1999, 151, 147.
Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvV2ns7g%3D&md5=58906b3679114008b6f8cd2522c38925CAS |

[13]  C. J. Milne, D. G. Kinniburgh, J. C. M. de Wit, W. H. van Riemsdijk, L. K. Koopal, Analysis of metal-ion binding by a peat humic acid using a simple electrostatic model. J. Colloid Interface Sci. 1995, 175, 448.
Analysis of metal-ion binding by a peat humic acid using a simple electrostatic model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXos12jtbw%3D&md5=834b63f39da0b06474387f90fe729440CAS |

[14]  M. A. Glaus, W. Hummel, L. R. Van Loon, Experimental Determination and Modelling of Trace Metal – Humate Interactions: A Pragmatic Approach for Applications in Groundwater, PSI Report Number 97–13 1997 (Paul Scherrer Institut: Villigen, Switzerland).

[15]  M. A. Glaus, W. Hummel, L. R. Van Loon, Trace metal–humate interactions. I. Experimental determination of conditional stability constants. Appl. Geochem. 2000, 15, 953.
Trace metal–humate interactions. I. Experimental determination of conditional stability constants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVKhsbc%3D&md5=8b32ec283df30ef6655ae3a486058f73CAS |

[16]  G. R. Choppin, P. M. Shanbhag, Binding of calcium by humic acid. J. Inorg. Nucl. Chem. 1981, 43, 921.
Binding of calcium by humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksFSgu7Y%3D&md5=c70c6cefc5afb1e6a74a92d03620828dCAS |

[17]  J. G. Hering, F. M. M. Morel, Humic acid complexation of calcium and copper. Environ. Sci. Technol. 1988, 22, 1234.
Humic acid complexation of calcium and copper.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltlCmsbo%3D&md5=46b5ec64b9c3680f3e5b5570def3a64cCAS |

[18]  P. Zhou, H. Yan, B. Gu, Competitive complexation of metal ions with humic substances. Chemosphere 2005, 58, 1327.
Competitive complexation of metal ions with humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXos1Wgsg%3D%3D&md5=35fc84a3ae26664b5af8b2ae869cfa45CAS |

[19]  I. Christl, H. Knicker, I. Kögel-Knabner, R. Kretzschmar, Chemical heterogeneity of humic substances: characterization of size fractions obtained by hollow-fibre ultrafiltration. Eur. J. Soil Sci. 2000, 51, 617.
| 1:CAS:528:DC%2BD3MXhtFyquw%3D%3D&md5=c731a0f5a73c15250a08b8d5c693cf4fCAS |

[20]  K. A. Thorn, D. W. Folan, P. MacCarthy, Characterization of the International Humic Substances Society standard and reference fulvic and humic acids by solution state carbon-13 (13C) and hydrogen-1 (1H) nuclear magnetic resonance spectrometry, in Water-Resources Investigations Report 89-4196 1989 (US Geological Survey: Denver, CO).

[21]  A. Avdeef, J. Zabronsky, H. H. Stuting, Calibration of copper ion selective electrode response to pCu 19. Anal. Chem. 1983, 55, 298.
Calibration of copper ion selective electrode response to pCu 19.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXksF2kuw%3D%3D&md5=ac77d75385a9c2dfcf01ae361c9c525eCAS |

[22]  I. Christl, C. J. Milne, D. G. Kinniburgh, R. Kretzschmar, Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding. Environ. Sci. Technol. 2001, 35, 2512.
Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlClu7k%3D&md5=cdc029ed9bdd0bab3571c36224fc105dCAS |

[23]  M. G. Keizer, W. H. van Riemsdijk, ECOSAT 2006 (Department of Soil Quality: Wageningen University, the Netherlands).

[24]  D. G. Kinniburgh, C. J. Milne, P. Venema, Design and construction of a personal computer-based automatic titrator. Soil Sci. Soc. Am. J. 1995, 59, 417.
Design and construction of a personal computer-based automatic titrator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt12qu7k%3D&md5=fd012e4caf495fcb6fbff0f4e8c317e3CAS |

[25]  I. Christl, R. Kretzschmar, Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 1. Proton binding. Environ. Sci. Technol. 2001, 35, 2505.
Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 1. Proton binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlClu7g%3D&md5=5d23e9d923634580c49b5dc722f7fe27CAS |

[26]  M. F. Benedetti, C. J. Milne, D. G. Kinniburgh, W. H. van Riemsdijk, L. K. Koopal, Metal ion binding to humic substances: application of the non-ideal competitive adsorption model. Environ. Sci. Technol. 1995, 29, 446.
Metal ion binding to humic substances: application of the non-ideal competitive adsorption model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivFOrs7s%3D&md5=499850c07f9d01dfa8166390f4baab36CAS |

[27]  M. F. Benedetti, W. H. van Riemsdijk, L. K. Koopal, Humic substances considered as a heterogeneous Donnan gel phase. Environ. Sci. Technol. 1996, 30, 1805.
Humic substances considered as a heterogeneous Donnan gel phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFans7Y%3D&md5=5fdac640b69a6dc2c3ed1950879b93f1CAS |

[28]  D. G. Kinniburgh, C. J. Milne, M. F. Benedetti, J. P. Pinheiro, J. Filius, L. K. Koopal, W. H. van Riemsdijk, Metal ion binding by humic acid: application of the NICA–Donnan model. Environ. Sci. Technol. 1996, 30, 1687.
Metal ion binding by humic acid: application of the NICA–Donnan model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVKgtL4%3D&md5=8b697352ac7d7a11f383a5114f7f5944CAS |

[29]  L. K. Koopal, W. H. van Riemsdijk, J. C. M. de Wit, M. F. Benedetti, Analytical isotherm equations for multicomponent adsorption to heterogeneous surfaces. J. Colloid Interface Sci. 1994, 166, 51.
Analytical isotherm equations for multicomponent adsorption to heterogeneous surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtl2ju7o%3D&md5=8c14881747009b73bbc5600554789f4fCAS |

[30]  D. G. Kinniburgh, C. K. Tang, FIT 1998 (British Geological Survey: Wallingford, UK).

[31]  W. Hummel, M. A. Glaus, L. R. Van Loon, Trace metal–humate interactions. II. The “conservative roof” model and its application. Appl. Geochem. 2000, 15, 975.
Trace metal–humate interactions. II. The “conservative roof” model and its application.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVKhtr4%3D&md5=555935d9fa1a4184402bc845d1853d8cCAS |

[32]  I. Christl, A. Metzger, I. Heidmann, R. Kretzschmar, Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding. Environ. Sci. Technol. 2005, 39, 5319.
Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVymuro%3D&md5=3fc24ec1727cffa124c0624beb59e15eCAS |

[33]  H.-P. Blume, G. W. Brümmer, R. Horn, E. Kandeler, I. Kögel-Knabner, R. Kretzschmar, K. Stahr, B.-M. Wilke, Scheffer/Schachtschabel: Lehrbuch der Bodenkunde 2010 (Spektrum Akademischer Verlag: Heidelberg).

[34]  C. J. Milne, D. G. Kinniburgh, E. Tipping, Generic NICA–Donnan model parameters for proton binding by humic substances. Environ. Sci. Technol. 2001, 35, 2049.
Generic NICA–Donnan model parameters for proton binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1GrsLY%3D&md5=c28a9b2aaff1534fe9f47b70af932ad3CAS |

[35]  I. Christl, R. Kretzschmar, C-1s NEXAFS spectroscopy reveals chemical fractionation of humic acid by cation-induced coagulation. Environ. Sci. Technol. 2007, 41, 1915.
C-1s NEXAFS spectroscopy reveals chemical fractionation of humic acid by cation-induced coagulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlynu70%3D&md5=19bd4bfe1e2a3f4765ed35e0e1d8738cCAS |