Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Adsorption of polyaromatic heterocycles on pyrophyllite surface by means of different theoretical approaches

C. Ignacio Sainz-Díaz A C , Misaela Francisco-Márquez B and Annik Vivier-Bunge B
+ Author Affiliations
- Author Affiliations

A Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Avenida de las Palmeras, E-18100-Armilla, Granada, Spain.

B Departamento de Química, Universidad Autónoma Metropolitana, Iztapalapa, México.

C Corresponding author. Email: ignacio.sainz@iact.ugr-csic.es

Environmental Chemistry 8(4) 429-440 https://doi.org/10.1071/EN11055
Submitted: 13 June 2011  Accepted: 22 June 2011   Published: 19 August 2011

Environmental context. Volatile organic compounds can adsorb to the surfaces of silicates present in atmospheric aerosols, but the mechanisms and interactions are not well understood. We compare theoretical approaches for describing the adsorption of polyaromatic heterocycles to a model phyllosilicate surface. The enthalpy and spectroscopic data for this adsorption provide valuable information for future experimental studies on these atmospheric pollutants.

Abstract. The adsorption of thiophene, benzothiophene and dibenzothiophene, as models of polyaromatic heterocycles, on the (001) surface of pyrophyllite, as a model of phyllosilicates, has been investigated by means of empirical interatomic potentials and quantum-mechanical methods based on Hartree–Fock and Density Functional Theory (DFT) approximations. Molecular Dynamic simulations have also been performed for this adsorption, exploring the different configurations that these polyaromatic heterocycles can adopt with respect to the surface. These adsorbates adopt more likely a planar disposition with respect to the phyllosilicate surface. Spectroscopic shifts of the main vibration frequencies upon adsorption of these heterocycles on the phyllosilicate surface have been identified. The adsorption energy calculated with different methods are compared and discussed in terms of adequacy of empirical potentials and DFT methods for describing the weak interactions observed. In addition to considering the (001) surface of pyrophyllite as an external surface of the mineral, the adsorption in the interlayer space was also explored obtaining a d(001) spacing of 12.64 Å. However, the adsorption energy is much lower than the cleavage energy of the interlayer space and it is clear that adsorption is more likely to occur on the external surface than in the interlayer space.


References

[1]  M. M. Broholm, K. Broholm, E. Arvin, Sorption of heterocyclic compounds on natural clayey till. J. Contam. Hydrol. 1999, 39, 183.
Sorption of heterocyclic compounds on natural clayey till.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvVaqtr0%3D&md5=4a9eaed8357c6d87f9eb1e29f35949f5CAS |

[2]  S. S. Johansen, A. B. Hansen, H. Mosbæk, E. Arvin, Identification of Heteroaromatic and other organic compounds in ground water at creosote-contaminated Sites in Denmark. Ground Water Monit. Remediat. 1997, 17, 106.
Identification of Heteroaromatic and other organic compounds in ground water at creosote-contaminated Sites in Denmark.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslyltLc%3D&md5=42073e2ba1f5546a9d1a2b225b33be8dCAS |

[3]  E. K. Frinak, C. D. Mashburn, M. A. Tolbert, O. B. Toon, Infrared characterization of water uptake by low temperature Na-montmorillonite: implications for earth and mars. J. Geophys. Res. 2005, 110, D09308.
Infrared characterization of water uptake by low temperature Na-montmorillonite: implications for earth and mars.Crossref | GoogleScholarGoogle Scholar |

[4]  C. I. García, J. A. Lercher, Adsorption and surface reactions of thiophene on ZSM 5 zeolites. J. Phys. Chem. 1992, 96, 2669.
Adsorption and surface reactions of thiophene on ZSM 5 zeolites.Crossref | GoogleScholarGoogle Scholar |

[5]  Y. Verbandt, H. Thienpont, I. Veretennicoff, P. Geerlings, G. L. J. A. Rikken, Origin of the saturation of the third-order optical nonlinear response of one-dimensional conjugated systems. Chem. Phys. Lett. 1997, 270, 471.
Origin of the saturation of the third-order optical nonlinear response of one-dimensional conjugated systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsFGmur8%3D&md5=5da37950c17259a5251817731856fd6fCAS |

[6]  C. O. Oriakhi, X. Zhang, M. M. Lerner, Synthesis and luminescence properties of a poly(p-phenylenevinylene)/montmorillonite layered nanocomposite. Appl. Clay Sci. 1999, 15, 109.
Synthesis and luminescence properties of a poly(p-phenylenevinylene)/montmorillonite layered nanocomposite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVersLg%3D&md5=89f67332d0d453e0113e288e3def44c1CAS |

[7]  V. Aggarwal, Y.-Y. Chien, B. J. Teppen, Molecular simulations to estimate thermodynamics for adsorption of polar organic solutes to montmorillonite. Eur. J. Soil Sci. 2007, 58, 945.
Molecular simulations to estimate thermodynamics for adsorption of polar organic solutes to montmorillonite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFCisrc%3D&md5=8c2483f1c50ca33c3e10a6c0a218f112CAS |

[8]  C. Iuga, A. Vivier-Bunge, A. Hernández-Laguna, C. I. Sainz-Díaz, Quantum chemistry and computational kinetics of the reaction between OH radicals and formaldehyde adsorbed on small silica aerosol models. J. Phys. Chem. C 2008, 112, 4590.
Quantum chemistry and computational kinetics of the reaction between OH radicals and formaldehyde adsorbed on small silica aerosol models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFWktbg%3D&md5=154a30451ad47c71b6a6e4e159643676CAS |

[9]  C. Iuga, C. I. Sainz-Díaz, A. Vivier-Bunge, On the OH initiated oxidation mechanism of aliphatic aldehydes in the presence of mineral aerosols. Geochim. Cosmochim. Acta 2010, 74, 3587.
On the OH initiated oxidation mechanism of aliphatic aldehydes in the presence of mineral aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVCqtb8%3D&md5=21db14d8018a597886579b79d4649176CAS |

[10]  A. Hinchliffe, H. J. Soscun-Machado, Ab initio studies of the dipole polarizabilities of conjugated molecules. Part 6. The geometry, static dipole polarizability and first hyperpolarizability of benzothiophene. J. Mol. Struct. THEOCHEM 1995, 334, 235.
Ab initio studies of the dipole polarizabilities of conjugated molecules. Part 6. The geometry, static dipole polarizability and first hyperpolarizability of benzothiophene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXms1Cru74%3D&md5=5f370b6510177c26839c910e8f9a324cCAS |

[11]  M. Zora, I. Özkan, Nucleus-independent chemical shift evaluation for benzo- and dibenzo-fused pyrrole, furan and thiophene derivatives. J. Mol. Struct. THEOCHEM 2003, 638, 157.
Nucleus-independent chemical shift evaluation for benzo- and dibenzo-fused pyrrole, furan and thiophene derivatives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVCgu7Y%3D&md5=f0a25518ecd0b98916bf09f784cf88b6CAS |

[12]  C. I. Sainz-Díaz, M. Francisco-Márquez, A. Vivier-Bunge, Molecular structure and spectroscopic properties of polyaromatic heterocycles by first principle calculations: spectroscopic shifts with the adsorption of thiophene on phyllosilicate surface. Theor. Chem. Acc. 2010, 125, 83.
Molecular structure and spectroscopic properties of polyaromatic heterocycles by first principle calculations: spectroscopic shifts with the adsorption of thiophene on phyllosilicate surface.Crossref | GoogleScholarGoogle Scholar |

[13]  K. F. Austen, T. O. H. White, A. Marmier, S. C. Parker, E. Artacho, M. T. Dove, Electrostatic versus polarization effects in the adsorption of aromatic molecules of varied polarity on an insulating hydrophobic surface. J. Phys. Condens. Matter 2008, 20, 035215.
Electrostatic versus polarization effects in the adsorption of aromatic molecules of varied polarity on an insulating hydrophobic surface.Crossref | GoogleScholarGoogle Scholar |

[14]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Danneberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01 2004 (Gaussian, Inc.: Wallingford, CT).

[15]  S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567.
First principles methods using CASTEP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVSitbk%3D&md5=0bccb36155c5b47281a4e25a1c64e239CAS |

[16]  E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, J. M. Soler, Linear-scaling ab-initio calculations for large and complex systems. Phys. Status Solidi 1999, 215, 809.
Linear-scaling ab-initio calculations for large and complex systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvFOrtLY%3D&md5=65c5bde3611a308f21e444bc5c606ea9CAS |

[17]  D. M. Ceperley, B. J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566.
Ground state of the electron gas by a stochastic method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXltlyhtrY%3D&md5=8b160a75c2c5dcc8324c9aebf6477462CAS |

[18]  N. Troullier, J. L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993.
Efficient pseudopotentials for plane-wave calculations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXovVyktw%3D%3D&md5=411eb4fe5549bdd7eb637ab7415f8c40CAS |

[19]  C. I. Sainz-Díaz, E. Escamilla-Roa, A. Hernández-Laguna, Pyrophyllite dehydroxylation process by first principles calculations. Am. Mineral. 2004, 89, 1092.

[20]  C. I. Sainz-Díaz, E. Escamilla-Roa, A. Hernández-Laguna, Quantum mechanical calculations of trans-vacant and cis-vacant polymorphism in dioctahedral 2:1 phyllosilicates. Am. Mineral. 2005, 90, 1827.
Quantum mechanical calculations of trans-vacant and cis-vacant polymorphism in dioctahedral 2:1 phyllosilicates.Crossref | GoogleScholarGoogle Scholar |

[21]  H. Heinz, H. Koerner, K. L. Anderson, R. A. Vaia, B. L. Farmer, Force field for mica-type silicates and dynamics of octadecylammonium chains grafted to montmorillonite. Chem. Mater. 2005, 17, 5658.
Force field for mica-type silicates and dynamics of octadecylammonium chains grafted to montmorillonite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2nurfM&md5=88fc1c7776dc63d162fc08fa7f2c4bd3CAS |

[22]  H. Heinz, R. A. Vaia, B. L. Farmer, Interaction energy and surface reconstruction between sheets of layered silicates. J. Chem. Phys. 2006, 124, 224713.
Interaction energy and surface reconstruction between sheets of layered silicates.Crossref | GoogleScholarGoogle Scholar |

[23]  B. H. Besler, K. M. Merz, P. A. Kollman, Atomic charges derived from semiempirical methods. J. Comput. Chem. 1990, 11, 431.
Atomic charges derived from semiempirical methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkt12nu7k%3D&md5=3267e217dc58d723277141a6c0745effCAS |

[24]  A. K. Rappe, W. A. Goddard, Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 1991, 95, 3358.
Charge equilibration for molecular dynamics simulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhvFaktbo%3D&md5=095d2e8d12dfd1d9a384ae158d5a29c1CAS |

[25]  Materials Studio Release Notes, Release 5.0 2009 (Accelrys Software Inc.: San Diego, CA).

[26]  R. Wardle, G. W. Brindley, The crystal structures of pyrophyllite, 1Tc, and its dehydroxylate. Am. Mineral. 1972, 57, 732.
| 1:CAS:528:DyaE38XktFSrs7k%3D&md5=f7ce8408dd35d7ef7c7f1849d63a0580CAS |

[27]  C. I. Sainz-Díaz, A. Hernández-Laguna, M. Dove, Modelling of dioctahedral 2:1 phyllosilicates by means of transferable empirical potentials. Phys. Chem. Miner. 2001, 28, 130.
Modelling of dioctahedral 2:1 phyllosilicates by means of transferable empirical potentials.Crossref | GoogleScholarGoogle Scholar |

[28]  B. Bak, D. Christensen, L. Hansen-Nygaard, J. Rastrup-Andersen, The structure of thiophene. J. Mol. Spectrosc. 1961, 7, 58.
The structure of thiophene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xns1U%3D&md5=fe151c0dfc658f5b1ff6e98fa432e86cCAS |

[29]  H. Soscún, Y. Alvarado, J. Hernández, P. Hernández, R. Atencio, A. Hinchliffe, Experimental and theoretical determination of the dipole polarizability of dibenzothiophene. J. Phys. Org. Chem. 2001, 14, 709.
Experimental and theoretical determination of the dipole polarizability of dibenzothiophene.Crossref | GoogleScholarGoogle Scholar |

[30]  D. Yamazaki, T. Nishinaga, K. Komatsu, Radical cation of dibenzothiophene fully annelated with bicyclo[2.2.2]octene units: x-ray crystal structure and electronic properties. Org. Lett. 2004, 6, 4179.
Radical cation of dibenzothiophene fully annelated with bicyclo[2.2.2]octene units: x-ray crystal structure and electronic properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlShu74%3D&md5=5e48beb34feb429dc8ba0e8f7c734ba6CAS |

[31]  J. H. Lee, S. Guggenheim, Single crystal X-ray refinement of pyrophyllite-1Tc. Am. Mineral. 1981, 66, 350.
| 1:CAS:528:DyaL3MXhsVyksLg%3D&md5=d7459ef3cd48b941bba675dc8aa68f01CAS |

[32]  T. Thonhauser, A. Puzder, D. C. Langreth, Interaction energies of monosubstituted benzene dimers via nonlocal density functional theory. J. Chem. Phys. 2006, 124, 164106.
Interaction energies of monosubstituted benzene dimers via nonlocal density functional theory.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283ltVyquw%3D%3D&md5=9d66044d19771a37896428ff503dc6deCAS |

[33]  M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, B. I. Lundqvist, Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.
Van der Waals density functional for general geometries.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2czksVKnsA%3D%3D&md5=47f0f1f4f6ca19cb7122e0cb611e7853CAS |

[34]  V. Lorprayoon, R. A. Condrate, Infrared spectra of thiophene adsorbed on H-montmorillonite. Appl. Spectrosc. 1982, 36, 696.
Infrared spectra of thiophene adsorbed on H-montmorillonite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xmt1Kitbg%3D&md5=22dd1a7abb60f88db619094d24356c1aCAS |

[35]  E. A. S. Castro, J. B. L. Martins, Theoretical study of benzene interaction on kaolinite. J. Comput. Aided Mater. Des. 2005, 12, 121.
Theoretical study of benzene interaction on kaolinite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVKjsrw%3D&md5=584a5749e0090562e9c4743b8f73b203CAS |

[36]  A. Michalkova, J. J. Szymczak, J. Leszczynski, Adsorption of 2,4-dinitrotoluene on dickite: the role of H-bonding. Struct. Chem. 2005, 16, 325.
Adsorption of 2,4-dinitrotoluene on dickite: the role of H-bonding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVWru70%3D&md5=481b18922e4141342cb3763963225ee0CAS |

[37]  A. Pelmenschikov, I.-L. Zilberberg, J. Leszczynski, A. Famulari, M. Sironi, M. Raimondi, cis-[Pt(NH3)(2)](2+) coordination to the N7 and O6 Sites of a guanine–cytosine pair: disruption of the Watson–Crick H-bonding pattern. Chem. Phys. Lett. 1999, 314, 496.
cis-[Pt(NH3)(2)](2+) coordination to the N7 and O6 Sites of a guanine–cytosine pair: disruption of the Watson–Crick H-bonding pattern.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVKrt74%3D&md5=bb62e76b8f9c5e11caf5235ad965b615CAS |

[38]  G. Dios-Cancela, L. Alfonso-Méndez, F. J. Huertas, E. Romero-Taboada, C. I. Sainz-Díaz, A. Hernández-Laguna, Adsorption mechanism and structure of the montmorillonite complexes with (CH3)2XO (X D C, and S), (CH3O)3PO, and CH3–CN molecules. J. Colloid Interface Sci. 2000, 222, 125.
Adsorption mechanism and structure of the montmorillonite complexes with (CH3)2XO (X D C, and S), (CH3O)3PO, and CH3–CN molecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1Khtg%3D%3D&md5=8a0e7b645891e89e4570f6580b1f4a07CAS |