Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Photolysis of benzotriazole and formation of its polymerised photoproducts in aqueous solutions under UV irradiation

You-Sheng Liu A B , Guang-Guo Ying A B C , Ali Shareef B and Rai S. Kookana B
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China. Email: victor.liuyousheng@gmail.com

B Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB No. 2, Glen Osmond, SA 5064, Australia. Email: ali.shareef@csiro.au; rai.kookana@csiro.au

C Corresponding author. Email: guangguo.ying@gmail.com

Environmental Chemistry 8(2) 174-181 https://doi.org/10.1071/EN10141
Submitted: 19 December 2010  Accepted: 9 February 2011   Published: 2 May 2011

Environmental context. Benzotriazole is an anti-corrosion agent that is widely applied in various industrial processes and in household products. It has been found persistent in various aquatic environments. Our investigation found that benzotriazole can be rapidly transformed under UV light to form several photoproducts. Photolysis rates decreased with increasing solution pH, whereas salinity had no significant effect. Metal species Cu2+ and Fe3+, and humic acid in aquatic environment could have inhibitory effects on the photolysis of benzotriazole.

Abstract. Benzotriazole (BT) is an anti-corrosion agent used widely in some industrial processes and household products, and it has been detected in surface water and ground water due to its high mobility and low biodegradability. We have investigated the photolysis of benzotriazole in aqueous solutions under UV radiation at 254 nm and the effect of pH, salinity, metal species and dissolved organic matter on the photo-transformation processes. Benzotriazole was found to undergo rapid transformation to form several photoproducts. The half-lives for the photolysis of benzotriazole ranged from 2.8 to 14.3 h in various aqueous solutions containing metal ions and dissolved organic matter. Photolysis rates decreased with increasing solution pH, whereas salinity had no significant effect. Metal species Cu2+ and Fe3+, and especially humic acid had inhibitory effects on the photolysis of benzotriazole under UV light irradiation at 254 nm. We propose the formation of three major photoproducts via instantaneous polymerisation of small intermediates generated during the photolysis of benzotriazole including 2,6-diethylaniline, phenazine and 1,6-dihydroxyphenazine.

Additional keywords: degradation, polymerisation, UV light, water.


References

[1]  S. Weiss, J. Jakobs, T. Reemtsma, Discharge of three benzotriazole corrosion inhibitors with municipal wastewater and improvements by membrane bioreactor treatment and ozonation. Environ. Sci. Technol. 2006, 40, 7193.
Discharge of three benzotriazole corrosion inhibitors with municipal wastewater and improvements by membrane bioreactor treatment and ozonation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFGnsLvM&md5=5cbef69149c89fda2394630344593cf0CAS | 17180966PubMed |

[2]  D. S. Hart, L. C. Davis, L. E. Erickson, T. M. Callender, Sorption and partitioning parameters of benzotriazole compounds. Microchem. J. 2004, 77, 9.
Sorption and partitioning parameters of benzotriazole compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislSrurw%3D&md5=0776f9b974d21c81ed577845d251b0ecCAS |

[3]  D. Voutsa, P. Hartmann, C. Schaffner, W. Giger, Benzotriazoles, alkylphenols and bisphenol A in municipal wastewaters and in the Glatt River, Switzerland. Environ. Sci. Pollut. Res. 2006, 13, 333.
Benzotriazoles, alkylphenols and bisphenol A in municipal wastewaters and in the Glatt River, Switzerland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCrtbzM&md5=c1a7e026c4c05c4a843f15803f7929f9CAS |

[4]  T. Reemtsma, S. Weiss, J. Mueller, M. Petrovic, S. Gonzalez, D. Barcelo, F. Ventura, T. P. Knepper, Polar pollutant entry into the water cycle by municipal wastewater: a European perspective. Environ. Sci. Technol. 2006, 40, 5451.
Polar pollutant entry into the water cycle by municipal wastewater: a European perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnslKmu7s%3D&md5=f1ca3dc62aa836d875f68b46b3251a1fCAS | 16999124PubMed |

[5]  S. Weiss, T. Reemtsma, Determination of benzotriazole corrosion inhibitors from aqueous environmental samples by liquid chromatography electrospray ionization tandem mass spectrometry. Anal. Chem. 2005, 77, 7415.
Determination of benzotriazole corrosion inhibitors from aqueous environmental samples by liquid chromatography electrospray ionization tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2nurfO&md5=62cc2156c2d1294a8daca19fbe518e41CAS | 16285694PubMed |

[6]  W. Giger, C. Schaffner, H. P. E. Kohler, Benzotriazole and tolyltriazole as aquatic contaminants. 1. Input and occurrence in rivers and lakes. Environ. Sci. Technol. 2006, 40, 7186.
Benzotriazole and tolyltriazole as aquatic contaminants. 1. Input and occurrence in rivers and lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKjs77E&md5=f3d5a56bf4fb992de143ef4238d7462aCAS | 17180965PubMed |

[7]  A. Kiss, E. Fries, Occurrence of benzotriazoles in the rivers Main, Hengstbach, and Hegbach (Germany). Environ. Sci. Pollut. Res. 2009, 16, 702.
Occurrence of benzotriazoles in the rivers Main, Hengstbach, and Hegbach (Germany).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2ntr7K&md5=08a08199a685f7b88fce5610359e3e50CAS |

[8]  D. A. Cancilla, J. Martinez, G. C. Van Aggelen, Detection of aircraft deicing/antiicing fluid additives in a perched water monitoring well at an international airport. Environ. Sci. Technol. 1998, 32, 3834.
Detection of aircraft deicing/antiicing fluid additives in a perched water monitoring well at an international airport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVKlsbo%3D&md5=10f1870dba7648cc0575b2d7e13925baCAS |

[9]  G. D. Breedveld, R. Roseth, M. Sparrevik, T. Hartnik, L. J. Hem, Persistence of the de-icing additive benzotriazole at an abandoned airport. Water Air Soil Poll. Focus 2003, 3, 91.
Persistence of the de-icing additive benzotriazole at an abandoned airport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFGrs70%3D&md5=a4b0e19ebc5a1dc4c2db8b9b47afded6CAS |

[10]  Y. Jia, G. D. Breedveld, P. Aagaard, Column studies on transport of deicing additive benzotriazole in a sandy aquifer and a zerovalent barrier. Chemosphere 2007, 69, 1409.
Column studies on transport of deicing additive benzotriazole in a sandy aquifer and a zerovalent barrier.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGrs73N&md5=1bd1b9a200dee79ba9baf32ebf496ee3CAS | 17588639PubMed |

[11]  J. Hollingsworth, R. Sierra-Alvarez, M. Zhou, K. L. Ogden, J. A. Field, Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry. Chemosphere 2005, 59, 1219.
Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1Ckt7Y%3D&md5=f297da17d8b76d05f6842aa3c016b95bCAS | 15857633PubMed |

[12]  T. Reemtsma, U. Miehe, U. Duennbier, M. Jekel, Polar pollutants in municipal wastewater and the water cycle: Occurrence and removal of benzotriazoles. Water Res. 2010, 44, 596.
Polar pollutants in municipal wastewater and the water cycle: Occurrence and removal of benzotriazoles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFegs7c%3D&md5=4327aef47ab19cc841caab63e751c1b1CAS | 19666184PubMed |

[13]  D. A. Pillard, J. S. Cornell, D. L. DuFresne, M. T. Hernandez, Toxicity of benzotriazole and benzotriazole derivatives to three aquatic species. Water Res. 2001, 35, 557.
Toxicity of benzotriazole and benzotriazole derivatives to three aquatic species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlarsLw%3D&md5=2eb1f3ebb56038a8c4aefa93c1902c15CAS | 11229011PubMed |

[14]  Y. Jia, L. R. Bakken, G. D. Breedveld, P. Aagaard, D. Frostegard, Organic compounds that reach subsoil may threaten groundwater quality: effect of benzotriazole on degradation kinetics and microbial community composition. Soil Biol. Biochem. 2006, 38, 2543.
Organic compounds that reach subsoil may threaten groundwater quality: effect of benzotriazole on degradation kinetics and microbial community composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFKjt7s%3D&md5=3ae2c2c08dfe5ce4e6dd9759cfd44a36CAS |

[15]  R. C. Sills, J. R. Hailey, J. Neal, G. A. Boorman, J. K. Haseman, R. L. Melnick, Examination of low-incidence brain tumor responses in F344 rats following chemical exposures in national toxicology program carcinogenicity studies. Toxicol. Pathol. 1999, 27, 589.
Examination of low-incidence brain tumor responses in F344 rats following chemical exposures in national toxicology program carcinogenicity studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsFynur0%3D&md5=ba066fa6721fd53a5468f5071340b820CAS | 10528639PubMed |

[16]  L. N. Davis, J. Santodonato, P. H. Howard, J. Saxena, Investigation of selected potential environmental contaminants: benzotriazoles: final report. Office of Toxic Substances, EPA Document 560/2-77-001 1977 (US EPA: Washington, DC).

[17]  C. L. Gruden, S. M. Dow, M. T. Hernandez, Fate and toxicity of aircraft deicing fluid additives through anaerobic digestion. Water Environ. Res. 2001, 73, 72.
Fate and toxicity of aircraft deicing fluid additives through anaerobic digestion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvVCjsbk%3D&md5=260a704d76be7befa1f69cd9fe2d48bdCAS | 11558306PubMed |

[18]  R. Andreozzi, V. Caprio, A. Insola, G. Longo, Photochemical degradation of benzotriazole in aqueous solution. J. Chem. Technol. Biotechnol. 1998, 73, 93.
Photochemical degradation of benzotriazole in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltFahsg%3D%3D&md5=7138455fac50a440371c39b287a16a55CAS |

[19]  S. A. Snyder, P. Westerhoff, Y. Yoon, D. L. Sedlak, Pharmaceuticals, personal care products and endocrine disrupters in water: implications for the water industry. Environ. Eng. Sci. 2003, 20, 449.
Pharmaceuticals, personal care products and endocrine disrupters in water: implications for the water industry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntV2msr8%3D&md5=0541ba0f524179a037beef46ea070d99CAS |

[20]  G. G. Ying, R. S. Kookana, A. Kumar, Fate of estrogens and xenoestrogens in four sewage treatment plants with different technologies. Environ. Toxicol. Chem. 2008, 27, 87.
Fate of estrogens and xenoestrogens in four sewage treatment plants with different technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKh&md5=3811c15f58cacc17502778a10d0822ebCAS | 18092854PubMed |

[21]  G. G. Ying, R. S. Kookana, D. W. Kolpin, Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies. J. Environ. Monit. 2009, 11, 1498.
Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsVaqtrw%3D&md5=8243f47fc30efb9079ce8507e1631aecCAS | 19657534PubMed |

[22]  R. G. Zepp, G. L. Baughan, P. F. Schlotzhauer, Comparison of photochemical behavior of various humic substances in water: I. Sunlight induced reactions of aquatic pollutants photosensitized by humic substances. Chemosphere 1981, 10, 109.
Comparison of photochemical behavior of various humic substances in water: I. Sunlight induced reactions of aquatic pollutants photosensitized by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhvFOgtrw%3D&md5=87de38fd31922e71a7438d87677444bdCAS |

[23]  D. Zhou, F. Wu, N. S. Deng, W. Xiang, Photooxidation of bisphenol A (BPA) in water in the presence of ferric and carboxylate salts. Water Res. 2004, 38, 4107.
Photooxidation of bisphenol A (BPA) in water in the presence of ferric and carboxylate salts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosFSmu70%3D&md5=eb65b0cdad3a278c83bfe10d987aa9cdCAS | 15491658PubMed |

[24]  K. H. Chan, W. Chu, Effect of humic acid on the photolysis of the pesticide atrazine in a surfactant-aided soil-washing system in acidic condition. Water Res. 2005, 39, 2154.
Effect of humic acid on the photolysis of the pesticide atrazine in a surfactant-aided soil-washing system in acidic condition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFWjtLw%3D&md5=d06d31b53b8b9eaeec9df5ae94b87a34CAS | 15893357PubMed |

[25]  W. J. Song, W. H. Ma, J. H. Ma, C. C. Chen, J. C. Zhao, Photochemical oscillation of FeII/FeIII ratio induced by periodic flux of dissolved organic matter. Environ. Sci. Technol. 2005, 39, 3121.
Photochemical oscillation of FeII/FeIII ratio induced by periodic flux of dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisleqsL0%3D&md5=3be28d944a787a1fd0616e059de659a9CAS | 15926561PubMed |

[26]  J. M. Halket, A. Przyborowska, S. E. Stein, W. G. Mallard, S. Down, R. A. Chalmers, Deconvolution gas chromatography mass spectrometry of urinary organic acids – potential for pattern recognition and automated identification of metabolic disorders. Rapid Commun. Mass Spectrom. 1999, 13, 279.
Deconvolution gas chromatography mass spectrometry of urinary organic acids – potential for pattern recognition and automated identification of metabolic disorders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlKntrw%3D&md5=56d503bcb38a6e974cd9b5290ecc80eaCAS | 10097403PubMed |

[27]  P. Ausloos, C. Clifton, S. G. Lias, A. I. Mikaya, S. E. Stein, D. V. Tchekhovskoi, O. D. Sparkman, V. Zaikin, D. Zhu, The critical evaluation of a comprehensive mass spectral library. J. Am. Soc. Mass Spectrom. 1999, 10, 287.
The critical evaluation of a comprehensive mass spectral library.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlensL0%3D&md5=3acd24871a0026273e6fc4a975f49d2cCAS | 10197350PubMed |

[28]  S. E. Stein, An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spectrom. 1999, 10, 770.
An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvFert7Y%3D&md5=d69f40a0640f46ee6dd3a24f3b9bbdd8CAS |

[29]  J. Kopka, N. Schauer, S. Krueger, C. Birkemeyer, B. Usadel, E. Bergmuller, P. Dormann, W. Weckwerth, Y. Gibon, M. Stitt, L. Willmitzer, A. R. Fernie, D. Steinhauser, GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 2005, 21, 1635. [Published online ahead of print 21 December 2004]10.1093/BIOINFORMATICS/BTI236

[30]  W. Pongsuwan, E. Fukusaki, T. Bamba, T. Yonetani, T. Yamahara, A. Kobayashi, Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. J. Agric. Food Chem. 2007, 55, 231.
Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlaru7nL&md5=f73c43c105d38ddd663404d00a3a0793CAS | 17227047PubMed |

[31]  T. Shepherd, G. Dobson, S. R. Verrall, S. Conner, D. W. Griffiths, J. W. McNicol, H. V. Davies, D. Stewart, Potato metabolomics by GC-MS: what are the limiting factors? Metabolomics 2007, 3, 475.
Potato metabolomics by GC-MS: what are the limiting factors?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVals7vO&md5=7e4d491c25f5206687bc3ca22f146bd1CAS |

[32]  D. R. Rudell, J. P. Mattheis, E. A. Curry, Prestorage ultraviolet-white light irradiation alters apple peel metabolome. J. Agric. Food Chem. 2008, 56, 1138.
Prestorage ultraviolet-white light irradiation alters apple peel metabolome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFelsA%3D%3D&md5=f0b405430bacebd83f2ddbc53977a21aCAS | 18167073PubMed |

[33]  H. Shizuka, H. Hiratsuka, M. Jinguji, H. Hiraoka, Photolysis of benzotriazole in alcoholic glass at 77 K. J. Phys. Chem. 1987, 91, 1793.
Photolysis of benzotriazole in alcoholic glass at 77 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXht12jsLg%3D&md5=4c0bf98c671622e9e6d17a0b7eda9118CAS |

[34]  P. A. Wender, S. M. Touami, C. Alayrac, U. C. Philipp, Triazole photonuclease: a new family of light activatable DNA cleaving agents. J. Am. Chem. Soc. 1996, 118, 6522.
Triazole photonuclease: a new family of light activatable DNA cleaving agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjs1GrsbY%3D&md5=5dbe4db72ba0e59a3fd9cc591c9ba278CAS |

[35]  H. Wang, C. Burda, G. Persy, J. Wirz, Photochemical of 1H-benzotriazole in aqueous solution: a photolatent base. J. Am. Chem. Soc. 2000, 122, 5849.
Photochemical of 1H-benzotriazole in aqueous solution: a photolatent base.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2qtb4%3D&md5=bcba054c005c08c18bbfce2f06a9ea44CAS |

[36]  Y. B. Ding, C. Z. Yang, L. H. Zhu, J. D. Zhang, Photoelectrochemical activity of liquid phase deposited TiO2 film for degradation of benzotriazole. J. Hazard. Mater. 2010, 175, 96.
Photoelectrochemical activity of liquid phase deposited TiO2 film for degradation of benzotriazole.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOqsLjN&md5=43ef2011677ea07202d39ce8291f4359CAS | 19783090PubMed |

[37]  P. Y. Lu, R. L. Metcalf, Environmental fate and biodegradability of benzene derivatives as studied in a model aquatic ecosystem. Environ. Health Perspect. 1975, 10, 269.
Environmental fate and biodegradability of benzene derivatives as studied in a model aquatic ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE28%2Fgt12gsg%3D%3D&md5=ac2788f79ff1a8d288ebfc4d64eafa0cCAS | 1157796PubMed |

[38]  J. M. Turner, A. J. Messenger, Occurrence, biochemistry, and physiology of phenazine pigment production. Adv. Microb. Physiol. 1986, 27, 211.
Occurrence, biochemistry, and physiology of phenazine pigment production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtVGku7Y%3D&md5=a165894c12579143ba3c6459537b0cb1CAS | 3532716PubMed |

[39]  M. McDonald, D. V. Mavrodi, L. S. Thomashow, H. G. Floss, Phenazine biosynthesis in Pseudomonas fluorescens: branchpoint from the primary shikimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid. J. Am. Chem. Soc. 2001, 123, 9459.
Phenazine biosynthesis in Pseudomonas fluorescens: branchpoint from the primary shikimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt1Cku7c%3D&md5=26ca3ac72c13aa1a87d8271d9cb288c0CAS | 11562236PubMed |

[40]  D. Dwivedi, B. N. Johri, Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr. Sci. 2003, 85, 1693..

[41]  D. V. Mavrodi, W. Blankenfeldt, L. S. Thomashow, Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu. Rev. Phytopathol. 2006, 44, 417.
Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVylsLbL&md5=76fd564dbf9d4ba206067d22d2eeaf83CAS | 16719720PubMed |

[42]  L. J. Hem, T. Hartnik, R. Roseth, G. D. Breedveld, Photochemical degradation of benzotriazole. J. Environ. Sci. Health. A 2003, 38, 471.
Photochemical degradation of benzotriazole.Crossref | GoogleScholarGoogle Scholar |

[43]  F. H. Frimmel, H. Bauer, J. Pautzien, P. Muraseecco, A. M. Braun, Laser flash photolysis of dissolved aquatic humic material and the sensitized production of singlet oxygen. Environ. Sci. Technol. 1987, 21, 541.
Laser flash photolysis of dissolved aquatic humic material and the sensitized production of singlet oxygen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVWgtrw%3D&md5=eaa35eeeea5e1201ba7617d29cbc0400CAS | 19994972PubMed |

[44]  F. H. Frimmel, D. P. Hessler, Photochemical degradation of triazine and anilide pesticides in natural waters, in Aquatic and Surface Photochemistry 1994, pp. 137–147 (Lewis: Boca Raton, FL).

[45]  R. G. Zepp, N. L. Wolfe, J. A. Gordon, G. L. Baughman, Dynamics of 2,4-D esters in surface waters. Hydrolysis, photolysis, and vaporization. Environ. Sci. Technol. 1975, 9, 1144.
Dynamics of 2,4-D esters in surface waters. Hydrolysis, photolysis, and vaporization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XntVeitw%3D%3D&md5=2402bc0c0a8515640ca69e70dd432fa0CAS |

[46]  J. Hawari, A. Demeter, R. Samson, Sensitized photolysis of polychlorobiphenyls in alkaline 2-propanol: dechlorination of aroclor 1254 in soil samples by solar radiation. Environ. Sci. Technol. 1992, 26, 2022.
Sensitized photolysis of polychlorobiphenyls in alkaline 2-propanol: dechlorination of aroclor 1254 in soil samples by solar radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltlKqs7c%3D&md5=cb0da611e3810df08006fe762520e668CAS |

[47]  H. Gao, R. G. Zepp, Factors influencing photoreactions of dissolved organic matter in a coastal river of the southeastern United States. Environ. Sci. Technol. 1998, 32, 2940.
Factors influencing photoreactions of dissolved organic matter in a coastal river of the southeastern United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVeguro%3D&md5=386e5d66b4b6206f417110a02922df6eCAS |

[48]  J. Hollender, S. G. Zimmermann, S. Koepke, M. Krauss, C. S. Mcardell, C. Ort, H. Singer, U. von Gunten, H. Siegrist, Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. Environ. Sci. Technol. 2009, 43, 7862.
Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvV2gtrw%3D&md5=340903b9a2e7c99d80efbf76e0b1e71bCAS | 19921906PubMed |

[49]  R. Loos, B. M. Gawlik, G. Locoro, E. Rimaviciute, S. Contini, G. Bidoglio, EU-wide survey of polar organic persistent pollutants in European river waters. Environ. Pollut. 2009, 157, 561.
EU-wide survey of polar organic persistent pollutants in European river waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOisLnF&md5=49c84a4893380a6f9eb2d17d7c90ada2CAS | 18952330PubMed |