Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Comparison of 1-D and 2-D NMR techniques for screening earthworm responses to sub-lethal endosulfan exposure

Jimmy Yuk A , Jennifer R. McKelvie A , Myrna J. Simpson A , Manfred Spraul B and André J. Simpson A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Toronto, Scarborough College, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.

B Bruker BioSpin GmbH, Silberstreifen, D-76287 Rheinstetten, Germany.

C Corresponding author. Email: andre.simpson@utoronto.ca

Environmental Chemistry 7(6) 524-536 https://doi.org/10.1071/EN10084
Submitted: 28 July 2010  Accepted: 10 October 2010   Published: 21 December 2010

Environmental context. The application of metabolomics from an environmental perspective depends on the analytical ability to discriminate minute changes in the organism resulting from exposure. In this study, 1-D and 2-D Nuclear Magnetic Resonance (NMR) experiments were examined to characterise the earthworm’s metabolic response to an organochlorine pesticide. 2-D NMR showed considerable improvement in discriminating exposed worms from controls and in identifying the metabolites responsible. This study demonstrates the potential of 2-D NMR in understanding subtle biochemical responses resulting from environmental exposure.

Abstract. Nuclear Magnetic Resonance (NMR) based metabolomics is a powerful approach to monitoring an organism’s metabolic response to environmental exposure. However, the discrimination between exposed and control groups, depends largely on the NMR technique chosen. Here, three 1-D NMR and three 2-D NMR techniques were investigated for their ability to discriminate between control earthworms (Eisenia fetida) and those exposed to a sub-lethal concentration of a commonly occurring organochlorine pesticide, endosulfan. Partial least-squares discriminant analysis found 1H–13C Heteronuclear Single Quantum Coherence (HSQC) spectroscopy to have the highest discrimination with a MANOVA value (degree of separation) three orders lower than any of the 1-D and 2-D NMR techniques. HSQC spectroscopy identified alanine, leucine, lysine, glutamate, glucose and maltose as the major metabolites of exposure to endosulfan, more than all the other techniques combined. HSQC spectroscopy in combination with a shorter 1-D experiment may prove to be an effective tool for the discrimination and identification of significant metabolites in organisms under environmental stress.

Additional keywords: Eisenia fetida, metabolic profiling, metabolomics, Nuclear Magnetic Resonance.


References

[1]  P. Jeschke, The unique role of halogen substituents in the design of modern agrochemicals Pest Manag. Sci. 2010, 66, 10.[Published online ahead of print 21 August 2009]
The unique role of halogen substituents in the design of modern agrochemicalsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGrsb3K&md5=fcb0a6a723bfed7eb4d2fb5b9898d112CAS | 19701961PubMed |

[2]  M. J. Simpson, J. R. McKelvie, Environmental metabolomics: new insights into earthworm ecotoxicity and contaminant bioavailability in soil. Anal. Bioanal. Chem. 2009, 394, 137.
Environmental metabolomics: new insights into earthworm ecotoxicity and contaminant bioavailability in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWisb0%3D&md5=d304641002f62432799bea2b74faee28CAS | 19194697PubMed |

[3]  M. Barthe, I. Pelletier, Comparing bulk extraction methods for chemically available polycyclic aromatic hydrocarbons with bioaccumulation in worms. Environ. Chem. 2007, 4, 271.
Comparing bulk extraction methods for chemically available polycyclic aromatic hydrocarbons with bioaccumulation in worms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1elsb8%3D&md5=b71117b63b86a0e54113fe042efdc910CAS |

[4]  M. N. Moore, Biocomplexity: the post-genome challenge in ecotoxicology. Aquat. Toxicol. 2002, 59, 1.
Biocomplexity: the post-genome challenge in ecotoxicology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslGnsbw%3D&md5=aa1f8d8091f89fd115add6d703cf3adcCAS | 12088630PubMed |

[5]  S. J. Rochfort, V. Ezernieks, A. L. Yen, NMR-based metabolomics using earthworms as potential indicators for soil health. Metabolomics 2009, 5, 95.
NMR-based metabolomics using earthworms as potential indicators for soil health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFSlsrY%3D&md5=90bc760d4af4f9ae9f18ab7102f957e6CAS |

[6]  S. A. E. Brown, J. R. McKelvie, A. J. Simpson, M. J. Simpson, 1H NMR metabolomics of earthworm exposure to sub-lethal concentrations of phenanthrene in soil. Environ. Pollut. 2010, 158, 2117..
| 20338676PubMed |

[7]  J. G. Bundy, H. C. Keun, J. K. Sidhu, D. J. Spurgeon, C. Svendsen, P. Kille, J. Morgan, Metabolic profile biomarkers of metal contamination in a sentinel terrestrial species are applicable across multiple sites. Environ. Sci. Technol. 2007, 41, 4458.
Metabolic profile biomarkers of metal contamination in a sentinel terrestrial species are applicable across multiple sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltVKqs70%3D&md5=70ef12c457c436298d140a7469c0e7dbCAS | 17626452PubMed |

[8]  J. G. Bundy, E. M. Lenz, N. J. Bailey, C. L. Gavaghan, C. Svendsen, D. Spurgeon, P. Hankard, D. Osborn, J. M. Weeks, S. A. Trauger, P. Speir, I. Sanders, J. C. Lindon, J. K. Nicholson, H. Tang, Metabonomic assessment of toxicity of 4-fluoroaniline, 3,5-difluoroaniline and 2-fluoro-4-methylaniline to the earthworm Eisenia veneta (Rosa): Identification of new endogenous biomarkers. Environ. Toxicol. Chem. 2002, 21, 1966..
| 12206438PubMed |

[9]  S. A. E. Brown, A. J. Simpson, M. J. Simpson, Evaluation of sample preparation methods for nuclear magnetic resonance metabolic profiling studies with Eisenia fetida. Environ. Toxicol. Chem. 2008, 27, 828.
Evaluation of sample preparation methods for nuclear magnetic resonance metabolic profiling studies with Eisenia fetida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFGntLg%3D&md5=e53afcf5410c77aaa4b636a0e9af0a4aCAS | 18333692PubMed |

[10]  S. A. E. Brown, A. J. Simpson, M. J. Simpson, 1H NMR metabolomics of earthworm responses to sub-lethal PAH exposure. Environ. Chem. 2009, 6, 432.
1H NMR metabolomics of earthworm responses to sub-lethal PAH exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSkurnK&md5=f50c45db2a73613e39038d22319fafafCAS |

[11]  M. R. Viant, E. S. Rosenblum, R. S. Tjeerdema, NMR-based metabolomics: A powerful approach for characterizing the effects of environmental stressors on organism health. Environ. Sci. Technol. 2003, 37, 4982.
NMR-based metabolomics: A powerful approach for characterizing the effects of environmental stressors on organism health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlykt7w%3D&md5=441e915536dcce57c1b8cfdc82da73baCAS | 14620827PubMed |

[12]  J. G. Bundy, E. M. Lenz, D. Osborn, J. M. Weeks, J. C. Lindon, J. K. Nicholson, Metabolism of 4-fluoroaniline and 4-fluorobiphenyl in the earthworm Eisenia veneta characterized by high-resolution NMR spectroscopy with directly coupled HPLC-NMR and HPLC-MS. Xenobiotica 2002, 32, 479.
Metabolism of 4-fluoroaniline and 4-fluorobiphenyl in the earthworm Eisenia veneta characterized by high-resolution NMR spectroscopy with directly coupled HPLC-NMR and HPLC-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVCltr8%3D&md5=d77ee3645ad3427162232d74feb92057CAS | 12160481PubMed |

[13]  M. A. Warne, E. M. Lenz, D. Osborn, J. M. Weeks, J. K. Nicholson, An NMR-based metabonomic investigation of the toxic effects of 3-trifluoromethyl-aniline on the earthworm Eisenia veneta. Biomarkers 2000, 5, 56.
An NMR-based metabonomic investigation of the toxic effects of 3-trifluoromethyl-aniline on the earthworm Eisenia veneta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1Giu7s%3D&md5=056618c62ed7e218a4a57a501245af59CAS |

[14]  R. T. McKay, Recent advances in solvent suppression for solution NMR: a practical reference. Annu. Rep. NMR Spectrosc. 2009, 66, 33.
Recent advances in solvent suppression for solution NMR: a practical reference.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOjs7nJ&md5=992d5aff37fdc857c7e1862e11bd40ecCAS |

[15]  C. Y. Lin, H. F. Wu, R. S. Tjeerdema, M. R. Viant, Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics 2007, 3, 55.
Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVOhu70%3D&md5=0b1de867e9595ae73d93d6833252a4fbCAS |

[16]  A. M. Weljie, J. Newton, P. Mercier, E. Carlson, C. M. Slupsky, Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal. Chem. 2006, 78, 4430.
Targeted profiling: quantitative analysis of 1H NMR metabolomics data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFKktbw%3D&md5=aad34ff6219be487a58fa1fe43dbca83CAS | 16808451PubMed |

[17]  D. Wishart, Quantitative metabolomics using NMR. Trends Analyt. Chem. 2008, 27, 228.
Quantitative metabolomics using NMR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvF2jtLg%3D&md5=840752dcdfa464b6ccdd1d8b6e670ebaCAS |

[18]  Q. N. Van, H. J. Issaq, Q. J. Jiang, Q. L. Li, G. M. Muschik, T. J. Waybright, H. Lou, M. Dean, J. Uitto, T. D. Veenstra, Comparison of 1D and 2D NMR spectroscopy for metabolic profiling. J. Proteome Res. 2008, 7, 630.
Comparison of 1D and 2D NMR spectroscopy for metabolic profiling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVegu7rF&md5=a38d5ff0785d43167a201167e5ac1e74CAS | 18081246PubMed |

[19]  Y. X. Xi, J. S. de Ropp, M. R. Viant, D. L. Woodruff, P. Yu, Improved identification of metabolites in complex mixtures using HSQC NMR spectroscopy. Anal. Chim. Acta 2008, 614, 127.
Improved identification of metabolites in complex mixtures using HSQC NMR spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvV2ksLs%3D&md5=bb6ceebae04cbfbae870c1517de0c0baCAS | 18420042PubMed |

[20]  E. Chikayama, M. Suto, T. Nishihara, K. Shinozaki, T. Hirayama, J. Kikuchi, Systematic NMR analysis of stable isotope labeled metabolite mixtures in plant and animal systems: coarse grained views of metabolic pathways. PLoS ONE 2008, 3, e3805.
Systematic NMR analysis of stable isotope labeled metabolite mixtures in plant and animal systems: coarse grained views of metabolic pathways.Crossref | GoogleScholarGoogle Scholar | 19030231PubMed |

[21]  C. Ludwig, R. M. Viant, Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox Phytochem. Anal. 2010, 21, 22.[Published online ahead of print 10 November 2009]
Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolboxCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGrtrnK&md5=282fd39783e0ddde29878247bb5ebeb7CAS | 19904730PubMed |

[22]  H. M. Parsons, C. Ludwig, M. R. Viant, Line-shape analysis of J-resolved NMR spectra: application to metabolomics and quantification of intensity errors from signal processing and high signal congestion. Magn. Reson. Chem. 2009, 47, S86..
| 19701928PubMed |

[23]  J. McKelvie, J. Yuk, Y. Xu, A. Simpson, M. Simpson, 1H NMR and GC/MS metabolomics of earthworm responses to sub-lethal DDT and endosulfan exposure. Metabolomics 2009, 5, 84.
1H NMR and GC/MS metabolomics of earthworm responses to sub-lethal DDT and endosulfan exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFSls7g%3D&md5=d4e7585d29f666e61993109e20bfeeceCAS |

[24]  C. A. Edwards, P. J. Bohlen, The effects of toxic chemicals on earthworms. Rev. Environ. Contam. Toxicol. 1992, 125, 23..

[25]  M. Kumar, C. V. Lakshmi, S. Khanna, Biodegradation and bioremediation of endosulfan contaminated soil. Bioresour. Technol. 2008, 99, 3116.
Biodegradation and bioremediation of endosulfan contaminated soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFOkt78%3D&md5=f919e7c75235f17d2cd64ac376f2220dCAS | 17646098PubMed |

[26]  S. Hussain, M. Arshad, M. Saleem, A. Khalid, Biodegradation of alpha- and beta-endosulfan by soil bacteria. Biodegradation 2007, 18, 731.
Biodegradation of alpha- and beta-endosulfan by soil bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1alsrfK&md5=966ba14b949a43cb88bbec4a42bd2d48CAS | 17252313PubMed |

[27]  J. G. Bundy, D. J. Spurgeon, C. Svendsen, P. K. Hankard, M. A. Warne, D. Osborn, J. C. Lindon, J. K. Nicholson, Environmental metabonomics: applying combination biomarker analysis in earthworms at a metal contaminated site. Ecotoxicology 2004, 13, 797.
Environmental metabonomics: applying combination biomarker analysis in earthworms at a metal contaminated site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslyrs7o%3D&md5=f6e88e4ac6422cb30d2525bdd4c161bbCAS | 15736850PubMed |

[28]  L. Eriksson, E. Johansson, N. Kettaneh-Wold, S. Wold, Introduction to multi- and megavariate data analysis using projection methods (PCA and PLS) 1999 (Umea: Sweden).

[29]  A. J. Simpson, S. A. Brown, Purge NMR: effective and easy solvent suppression. J. Magn. Reson. 2005, 175, 340.
Purge NMR: effective and easy solvent suppression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1ygsrY%3D&md5=0d0bebfae1b76b9eee53dc28e9db720dCAS | 15964227PubMed |

[30]  M. H. Levitt, R. Freeman, Compensation for pulse imperfections in NMR spin-echo experiments. J. Magn. Reson. 1981, 43, 65..

[31]  M. Forcella, E. Berra, R. Giacchini, B. Rossaro, P. Parenti, Increased alanine concentration is associated with exposure to fenitrothion but not carbamates in Chironomus riparius larvae. Ecotoxicol. Environ. Saf. 2007, 66, 326.
Increased alanine concentration is associated with exposure to fenitrothion but not carbamates in Chironomus riparius larvae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Sktrk%3D&md5=eb00a04109d2f9a4d4043cf1f12e5b73CAS | 17166588PubMed |

[32]  P. J. Garlick, The role of leucine in the regulation of protein metabolism. J. Nutr. 2005, 135, 1553S..
| 15930468PubMed |

[33]  F. R. Dastoli, The intermediary carbohydrate metabolism of Lumbricus terrestris. J. Cell. Comp. Physiol. 1964, 64, 465.
The intermediary carbohydrate metabolism of Lumbricus terrestris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXltlCktg%3D%3D&md5=6d0e58343de83ec12f5ed0f35a65163dCAS |

[34]  M. R. Viant, J. G. Bundy, C. A. Pincetich, J. S. de Ropp, R. S. Tjeerdema, NMR-derived developmental metabolic trajectories: An approach for visualizing the toxic actions of trichloroethylene during embryogenesis. Metabolomics 2005, 1, 149.
NMR-derived developmental metabolic trajectories: An approach for visualizing the toxic actions of trichloroethylene during embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SmsrjE&md5=812b2ed6d49ced39e05f37118748d94dCAS |

[35]  O. A. H. Jones, D. J. Spurgeon, C. Svendsen, J. L. Griffin, A metabolomics based approach to assessing the toxicity of the polyaromatic hydrocarbon pyrene to the earthworm Lumbricus rubellus. Chemosphere 2008, 71, 601.
A metabolomics based approach to assessing the toxicity of the polyaromatic hydrocarbon pyrene to the earthworm Lumbricus rubellus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVWjsbY%3D&md5=4b4e5a68a06eb1a1041c41c9f7f125efCAS | 17928029PubMed |

[36]  T. M. Devlin, Textbook of Biochemistry with Clinical Correlations, 5th edn 2002 (Wiley: New York).

[37]  G. L. Collingridge, W. Singer, Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol. Sci. 1990, 11, 290.
Excitatory amino acid receptors and synaptic plasticity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvVCkt74%3D&md5=d42b8205e6be4e509063c248fbae331aCAS | 2167544PubMed |

[38]  T. P. Obrenovitch, J. Urenjak, Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy. Prog. Neurobiol. 1997, 51, 39.
Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Oqu78%3D&md5=39a53eb0a43373793fb05a9de1aa1412CAS | 9044428PubMed |

[39]  Y. X. Xi, J. S. deRopp, M. R. Viant, D. L. Woodruff, P. Yu, Automated screening for metabolites in complex mixtures using 2D COSY NMR spectroscopy. Metabolomics 2007, 2, 221.
Automated screening for metabolites in complex mixtures using 2D COSY NMR spectroscopy.Crossref | GoogleScholarGoogle Scholar |

[40]  C. Tian, E. Chikayama, Y. Tsuboi, T. Kuromori, K. Shinozaki, J. Kikuchi, Top-down phenomics of Arabidopsis thaliana: metabolic profiling by one- and two-dimensional nuclear magnetic resonance spectroscopy and transcriptome analysis of albino mutants. J. Biol. Chem. 2007, 282, 18532.
Top-down phenomics of Arabidopsis thaliana: metabolic profiling by one- and two-dimensional nuclear magnetic resonance spectroscopy and transcriptome analysis of albino mutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsVOksLw%3D&md5=1ad72be89f7422955c782da26e697a84CAS | 17468106PubMed |

[41]  F. Heimbach, A comparison of laboratory methods for toxicity testing with earthworms, in Earthworms in Waste and Environmental Management (Eds CA Edwards, EF Neuhauser) 1988, pp. 329–335. (SPB Academic Publishing: The Hague, the Netherlands).

[42]  Earthworm, Acute Toxicity Tests, Test No. 207, in OECD Guidelines for the Testing of Chemicals, vol. 1, no. 2 1984 (Organisation for Economic Co-operation and Development).

[43]  L. Eriksson, P. L. Andersson, E. Johansson, M. Tysklind, Megavariate analysis of environmental QSAR data. Part I – a basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD). Mol. Divers. 2006, 10, 169.
Megavariate analysis of environmental QSAR data. Part I – a basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFykt7o%3D&md5=6b36fa192259985802ff12c0a1efcda4CAS | 16770514PubMed |

[44]  J. A. Westerhuis, H. C. J. Hoefsloot, S. Smit, D. J. Vis, A. K. Smilde, E. J. J. Velzen, J. P. M. Duijnhoven, F. A. Dorsten, Assessment of PLSDA cross validation. Metabolomics 2008, 4, 81.
Assessment of PLSDA cross validation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFSmtL8%3D&md5=ba203ef13f3640e8a2959b11bb3e0e37CAS |

[45]  D. M. Hawkins, S. C. Basak, D. Mills, Assessing model fit by cross-validation. J. Chem. Inf. Comput. Sci. 2003, 43, 579.
Assessing model fit by cross-validation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFartA%3D%3D&md5=ec50b593197580df6478292d19c127ccCAS | 12653524PubMed |

[46]  C. R. Rao, An asymptotic expansion of the distribution of Wilks’ criterion. Bull. Int. Stat. Inst. 1951, 33, 177..

[47]  H. E. Johnson, A. J. Lloyd, L. A. J. Mur, A. R. Smith, D. R. Causton, The application of MANOVA to analyse Arabidopsis thaliana metabolomic data from factorially designed experiments. Metabolomics 2007, 3, 517.
The application of MANOVA to analyse Arabidopsis thaliana metabolomic data from factorially designed experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVals7vJ&md5=6547b7873dd54eae136957a7949aa978CAS |