Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Photochlorination of bisphenol A by UV-Vis light irradiation in saline solution: effects of iron, nitrate and citric acid

Hui Liu A , Huimin Zhao A B , Shuo Chen A , Xie Quan A and Yaobin Zhang A
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, P.R. China.

B Corresponding author. Email: zhaohuim@dlut.edu.cn

Environmental Chemistry 7(6) 548-553 https://doi.org/10.1071/EN10069
Submitted: 30 June 2010  Accepted: 1 November 2010   Published: 21 December 2010

Environmental context. Chlorinated organic compounds are ubiquitous in the environment, and cause concern owing to their persistence and toxicity to organisms. In addition to anthropogenic sources, photochemical processes in saline waters could also yield chlorinated organic compounds. The present paper investigates the effects of iron, pH, nitrate and dissolved organic matter on the photochlorination of bisphenol A, a widely distributed endocrine disrupting chemical.

Abstract. Effects of several key influencing factors of environmental photochemistry, including iron, nitrate and dissolved organic matter (DOM), on the photochlorination of bisphenol A (BPA) were investigated. Iron promoted the formation of chlorinated BPA, but the rate decreased with increasing pH. This result was consistent with the results of laser flash photolysis, which showed that high pH decreased the formation of reactive chlorine species (chlorine radical, Cl/Cl2•–). Nitrate ion and citric acid, which was selected as an analogue of DOM, inhibited the chlorination of BPA separately. The results presented in this paper are helpful to get some idea of the degree of photochemical chlorination in aqueous environment.

Additional keywords: BPA, chlorine radicals, phototransformation, saline waters.


References

[1]  M. P. Longnecker, W. J. Rogan, G. Lucier, The human health effects of DDT (dichlorodiphenyl-trichloroethane) and PCBs (polychlorinated biphenyls) and an overview of organochlorines in public health. Annu. Rev. Public Health 1997, 18, 211.
The human health effects of DDT (dichlorodiphenyl-trichloroethane) and PCBs (polychlorinated biphenyls) and an overview of organochlorines in public health.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3ovVOltQ%3D%3D&md5=1b808c728cfe4f132c11ab190e3dbf95CAS | 9143718PubMed |

[2]  L. Carlsen, P. Lassen, Enzymatically mediated formation of chlorinated humic acids. Org. Geochem. 1992, 18, 477.
Enzymatically mediated formation of chlorinated humic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvVyntg%3D%3D&md5=f0c8c2057aae7ebc71121f59f25b8c6cCAS |

[3]  E. De Jong, A. E. Cazemier, J. A. Field, J. A. M. De Bont, Physiological role of chlorinated aryl alcohols biosynthesized de novo by the white rot fungus Bjerkandera sp. Strain BOS55. Appl. Environ. Microbiol. 1994, 60, 271..
| 16349157PubMed |

[4]  S. C. B. Myneni, Formation of stable chlorinated hydrocarbons in weathering plant material. Science 2002, 295, 1039.
Formation of stable chlorinated hydrocarbons in weathering plant material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Grtr8%3D&md5=7e708877ff8cf8679f6c6ff02f244d16CAS | 11799203PubMed |

[5]  P. Calza, C. Massolino, E. Pelizzetti, C. Minero, Solar driven production of toxic halogenated and nitroaromatic compounds in natural seawater. Sci. Total Environ. 2008, 398, 196.
Solar driven production of toxic halogenated and nitroaromatic compounds in natural seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVaru7k%3D&md5=bfa060706f2f9f340cc05fd15ec249c5CAS | 18452974PubMed |

[6]  H. Liu, H. M. Zhao, X. Quan, Y. B. Zhang, S. Chen, Formation of chlorinated intermediate from bisphenol A in surface saline water under simulated solar light irradiation. Environ. Sci. Technol. 2009, 43, 7712.
Formation of chlorinated intermediate from bisphenol A in surface saline water under simulated solar light irradiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWqu73I&md5=26e0da7aadb17d18ccb14893e422a7aeCAS | 19921883PubMed |

[7]  D. Vione, M. Minella, C. Minero, V. Maurino, P. Picco, A. Marchetto, G. Tartari, Photodegradation of nitrite in lake waters: role of dissolved organic matter. Environ. Chem. 2009, 6, 407.
Photodegradation of nitrite in lake waters: role of dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSkurnP&md5=463e75a0e38eb43723b7587b717f999fCAS |

[8]  E. Tipping, H. T. Corbishley, J.-F. Koprivnjak, D. J. Lapworth, M. P. Miller, Quantification of natural DOM from UV absorption at two wavelengths. Environ. Chem. 2009, 6, 472.
Quantification of natural DOM from UV absorption at two wavelengths.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslGjsbo%3D&md5=cba04de5b1db156ce5e05012bbf6e801CAS |

[9]  B. C. Faust, R. G. Zepp, Photochemistry of aqueous iron(III)-polycarboxylate compexes: roles in the chemistry of atmospheric and surface waters. Environ. Sci. Technol. 1993, 27, 2517.
Photochemistry of aqueous iron(III)-polycarboxylate compexes: roles in the chemistry of atmospheric and surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmtV2ru78%3D&md5=9b9028c541afdb9cd7ee65a41e497b6eCAS |

[10]  D. Vione, V. Maurino, C. Minero, P. Calza, E. Pelizzetti, Phenol chlorination and photochlorination in the presence of chloride ions in homogeneous aqueous solution. Environ. Sci. Technol. 2005, 39, 5066.
Phenol chlorination and photochlorination in the presence of chloride ions in homogeneous aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVersL4%3D&md5=7e02933e66c1bff0584a64a68d305b61CAS | 16053112PubMed |

[11]  A. J. Machulek, C. Vautier-giongo, J. E. F. Moraes, C. A. O. Nascimento, F. H. Quina, Laser flash photolysis study of the photocatalytic step of the photo-fenton reaction in saline solution. Photochem. Photobiol. 2006, 82, 208.
Laser flash photolysis study of the photocatalytic step of the photo-fenton reaction in saline solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFCitrk%3D&md5=f6c8c715f90c422541a47740cbf408c1CAS | 16117568PubMed |

[12]  A. W. Vermilyea, B. M. Voelker, Photo-Fenton reaction at near neutral pH. Environ. Sci. Technol. 2009, 43, 6927.
Photo-Fenton reaction at near neutral pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1SrtLg%3D&md5=c4e86ce2b761a20fbd4ce5912ca01263CAS | 19806722PubMed |

[13]  J. Mack, J. Bolton, Photochemistry of nitrite and nitrate in aqueous solution: a review. J. Photochem. Photobiol. A 1999, 128, 1.
Photochemistry of nitrite and nitrate in aqueous solution: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVyqsbY%3D&md5=7b01478382d7173e8586a2fcb731285bCAS |

[14]  M. J. Zhan, X. Yang, Q. M. Xian, L. G. Kong, Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances. Chemosphere 2006, 63, 378.
Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFCqu7o%3D&md5=f3f59e3f716c8ac71e4789c0882c8c8eCAS | 16289215PubMed |

[15]  D. Vione, V. Maurino, C. Minero, E. Pelizzetti, New processed in the environmental chemistry of nitrate: nitration of phenol upon nitrite photoinduced oxidation. Environ. Sci. Technol. 2002, 36, 669.
New processed in the environmental chemistry of nitrate: nitration of phenol upon nitrite photoinduced oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFegtA%3D%3D&md5=ee91e6224d881246539378d5e38e36ceCAS | 11878381PubMed |

[16]  N. S. Deng, F. Wu, F. Luo, M. Xiao, Ferric citrate-induced photodegradation of dyes in aqueous solutions. Chemosphere 1998, 36, 3101.
Ferric citrate-induced photodegradation of dyes in aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1Kltro%3D&md5=70c726b565d461df7dba74daee9ae51eCAS |

[17]  X. Ou, X. Quan, S. Chen, F. Zhang, Y. Zhao, Photocatalytic reaction by Fe(III)-citrate complex and its effect on the photodagradation of atrazine in auqeous solution. J. Photochem. Photobiol. A 2008, 197, 382.
Photocatalytic reaction by Fe(III)-citrate complex and its effect on the photodagradation of atrazine in auqeous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Kqsbw%3D&md5=5348ddff0090b6bff03919cf5e5c4d15CAS |

[18]  K. L. Howdeshell, A. K. Hotchkiss, K. A. Thayer, J. G. Vandenbergh, F. S. Vom Saal, Exposure to bisphenol A advances puberty. Nature 1999, 401, 763.
Exposure to bisphenol A advances puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntFaks74%3D&md5=0550daa6582a1acc53accf94b63dff39CAS | 10548101PubMed |

[19]  H. Takemura, J. Ma, K. Sayama, Y. Terao, B. T. Zhu, K. Shimoi, In vitro and in vivo estrogenic activity of chlorinated derivatives of bisphenol A. Toxicology 2005, 207, 215.
In vitro and in vivo estrogenic activity of chlorinated derivatives of bisphenol A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKksrrO&md5=a5749d1640edc34f1dc2087fab2e1a84CAS | 15596252PubMed |

[20]  L. Wang, H. Sun, Y. Wu, G. Huang, S. Dai, Photodegradation of nonylphenol polyethoxylates in aqueous solution. Environ. Chem. 2009, 6, 185.
Photodegradation of nonylphenol polyethoxylates in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVyqt74%3D&md5=a18d29eed1740b3552f9a13bdbdc17d2CAS |

[21]  S. Chiron, C. Minero, D. Vione, Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters. Environ. Sci. Technol. 2006, 40, 5977.
Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslOqsLY%3D&md5=0b0d0536008ce1ce725485b8a9ebc9c5CAS | 17051788PubMed |

[22]  G. Zhuang, Z. Yi, R. A. Duce, P. R. Brown, Chemistry of iron in marine aerosols. Global Biogeochem. Cy. 1992, 6, 161.
Chemistry of iron in marine aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXps1Sk&md5=702f162f8955f79791d1299f3e52ed11CAS |

[23]  F. Wu, N. S. Deng, Photochemistry of hydrolytic iron(III) species and photoinduced degradation of organic compounds. A minireview. Chemosphere 2000, 41, 1137.
Photochemistry of hydrolytic iron(III) species and photoinduced degradation of organic compounds. A minireview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksF2ntr4%3D&md5=afca5bc6e72890edeb5ccbe77bf6f114CAS | 10901238PubMed |

[24]  M. Lim, K. Chiang, R. Amal, Photochemical synthesis of chlorine gas from iron(III) and chloride solution. J. Photochem. Photobiol. A 2006, 183, 126.
Photochemical synthesis of chlorine gas from iron(III) and chloride solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xos12rtb4%3D&md5=30d40fe654c7eefbc4171a7b613af03cCAS |

[25]  J. Kiwi, A. Lopez, V. Nadtochenoko, Mechanism and kinetics of the OH-radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cl–). Environ. Sci. Technol. 2000, 34, 2162.
Mechanism and kinetics of the OH-radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cl).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVOqu7s%3D&md5=ac8c8b294664974c304ce1c401bc0480CAS |

[26]  M. D. Sevilla, S. Summerfield, I. Eliezer, J. Rak, M. C. R. Symons, Interaction of the chlorine atom with water: ESR and ab initio MO evidence for three-electron (σ2σ*1) bonding. J. Phys. Chem. A 1997, 101, 2910.
Interaction of the chlorine atom with water: ESR and ab initio MO evidence for three-electron (σ2σ*1) bonding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFyhu7c%3D&md5=23b218ee04f4c88d5fe841d3a4eb144cCAS |

[27]  V. Nadtochenko, J. Kiwi, Primary photochemical reactions in the photo-fenton system with ferric chloride. 1. A case study of xylidine oxidation as a model compound. Environ. Sci. Technol. 1998, 32, 3273.
Primary photochemical reactions in the photo-fenton system with ferric chloride. 1. A case study of xylidine oxidation as a model compound.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvVSrsbc%3D&md5=4152f96611ff85ee822e2700b198133fCAS |

[28]  P. Calza, V. Maurino, C. Minero, E. Pelizzetti, M. Sega, M. Vincenti, Photoinduced halophenol formation in the presence of iron(III) species or cadmium sulfide. J. Photochem. Photobiol. A 2005, 170, 61.
Photoinduced halophenol formation in the presence of iron(III) species or cadmium sulfide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gmsb4%3D&md5=2d1e5535eadb523ae88587cd8f8b8a41CAS |

[29]  P. P. Vaughan, N. V. Blough, Photochemical formation of hydroxyl radical by constituents of natural waters. Environ. Sci. Technol. 1998, 32, 2947.
Photochemical formation of hydroxyl radical by constituents of natural waters.Crossref | GoogleScholarGoogle Scholar |

[30]  X. Y. Yu, Critical evaluation of rate constants and equilibrium constants of hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. J. Phys. Chem. Ref. Data 2004, 33, 747.
Critical evaluation of rate constants and equilibrium constants of hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVCiurY%3D&md5=fdb76f723971feb87423504aba3dd53fCAS |

[31]  M. L. Alegre, M. Geronés, J. A. Rosso, S. G. Bertolotti, A. M. Braun, D. O. Mártire, M. C. Gonzalez, Kinetic study of the reactions of chlorine atoms and Cl2•– radical anions in aqueous solutions. 1. Reaction with benzene. J. Phys. Chem. A 2000, 104, 3117.
Kinetic study of the reactions of chlorine atoms and Cl2•– radical anions in aqueous solutions. 1. Reaction with benzene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsl2lsbg%3D&md5=80991bb47a4db26327a96f1a3b79bbafCAS |

[32]  T. Suzuki, Y. Nakagawa, I. Takano, K. Yaguchi, K. Yasuda, Environmental fate of bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity. Environ. Sci. Technol. 2004, 38, 2389.
Environmental fate of bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFekt74%3D&md5=14bbbc11198c32979d0fcaef81d12dc1CAS | 15116845PubMed |

[33]  O. C. Zafiriou, Sources and reaction of OH and daughter radicals in seawater. J. Geophys. Res. 1974, 79, 4491.
Sources and reaction of OH and daughter radicals in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXnsFWn&md5=302c54cae408531624313da3b143e9e6CAS |