Distribution of perfluoroalkyl compounds and mercury in fish liver from high-mountain lakes in France originating from atmospheric deposition
Lutz Ahrens A B F , Nicolas Marusczak C D , Janne Rubarth A E , Aurélien Dommergue C , Rachid Nedjai D , Christophe Ferrari C and Ralf Ebinghaus AA Institute for Coastal Research, GKSS Research Centre Geesthacht, D-21502 Geesthacht, Germany.
B Atmospheric Science and Technology Directorate, Environment Canada, Toronto, M3H 5T4, Canada.
C Laboratoire de Glaciologie et Géophysique de l’Environnement, F-38402 St Martin Dheres, France.
D Laboratoire Politiques publiques, Action Politique Territoires, F-38100 Grenoble, France.
E Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University of Jena, D-07743 Jena, Germany.
F Corresponding author. Email: lutz.ahrens@ec.gc.ca
Environmental Chemistry 7(5) 422-428 https://doi.org/10.1071/EN10025
Submitted: 16 March 2010 Accepted: 17 August 2010 Published: 13 October 2010
Environmental context. Perfluoroalkyl compounds and mercury are of rising concern because of their persistency, bioaccumulation potential and possibly adverse effects on humans and wildlife. In the present study, perfluoroalkyl compounds and mercury were quantified in fish liver from high-mountain lakes in which the contamination originated from atmospheric deposition. This study improves our understanding of atmospheric transport and deposition of these contaminants.
Abstract. Perfluoroalkyl compounds (PFCs) and total mercury (THg) were investigated in fish liver collected from four high-mountain lakes in the French alps in which the water was fed only by atmospheric deposition. Concentrations of various PFCs, including C9–C15 perfluoroalkyl carboxylates (PFCAs) and perfluorooctane sulfonate (PFOS) were quantified. The PFOS concentration was similar in all high-mountain lakes with mean concentrations ranging from 3.61–4.24 ng g–1 wet weight (ww) indicating homogeneous atmospheric deposition. Conversely, the spatial distribution of PFCAs and THg was strongly influenced from a different emission source, which is probably the city of Grenoble, which resulted in significantly higher concentration levels of ∑PFCAs in three lakes (P < 0.001) and of THg in two lakes (P < 0.05) located easterly from Grenoble. Furthermore, the positive correlation between PFCAs and THg suggest similar transport and bioaccumulation pathways. The contribution of the longer chain PFCAs decreased with increasing distance from the local source area of Grenoble, which could be attributed to their less pronounced transport potential. Results from this study demonstrate that the contamination of PFCs and THg in the fish of the high-mountain lakes originated from atmospheric deposition and subsequent bioaccumulation.
Acknowledgements
The authors thank the Conseil Général de l’Isère for its financial support for this study in the frame of the CECALM (Contamination des ECosystème ALpins par le Mercure) project. They also thank the Centre National de la Recherche Scientifique (CNRS), the University Joseph Fourier and the Institut Universitaire de France for their financial support. The authors finally thank Jean-Charles Massabuau and Régine Maury-Brachet for their help with THg analyses.
[1]
T. W. Clarkson ,
The three modern faces of mercury.
Environ. Health Perspect. 2002
, 110, 11.
| PubMed |
[2]
C. Lau ,
K. Anitole ,
C. Hodes ,
D. Lai ,
A. Pfahles-Hutchens ,
J. Seed ,
Perfluoroalkyl acids: a review of monitoring and toxicological findings.
Toxicol. Sci. 2007
, 99, 366.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[3]
H. Frank ,
E. H. Christoph ,
O. Holm-Hansen ,
J. L. Bullister ,
Trifluoroacetate in ocean waters.
Environ. Sci. Technol. 2002
, 36, 12.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[4]
L. D. Hylander ,
M. Meili ,
500 years of mercury production: global annual inventory by region until 2000 and associated emissions.
Sci. Total Environ. 2003
, 304, 13.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[5]
W. F. Fitzgerald ,
D. R. Engstrom ,
R. P. Mason ,
E. A. Nater ,
The case for atmospheric mercury contamination in remote areas.
Environ. Sci. Technol. 1998
, 32, 1.
| Crossref | GoogleScholarGoogle Scholar |
[6]
N. Pirrone ,
P. Costa ,
J. M. Pacyna ,
R. Ferrara ,
Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region.
Atmos. Environ. 2001
, 35, 2997.
| Crossref | GoogleScholarGoogle Scholar |
[7]
[8]
C. J. McMurdo ,
D. A. Ellis ,
E. Webster ,
J. Butler ,
R. D. Christensen ,
L. K. Reid ,
Aerosol enrichment of the surfactant PFO and mediation of the water-air transport of gaseous PFOA.
Environ. Sci. Technol. 2008
, 42, 3969.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[9]
J. Armitage ,
I. T. Cousins ,
R. C. Buck ,
K. Prevedouros ,
M. H. Russell ,
M. Macleod ,
S. H. Korzeniowski ,
Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources.
Environ. Sci. Technol. 2006
, 40, 6969.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[10]
D. A. Ellis ,
J. W. Martin ,
S. A. Mabury ,
A. O. De Silva ,
M. D. Hurley ,
M. D. Sulbaek Anderson ,
T. J. Wallington ,
Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids.
Environ. Sci. Technol. 2004
, 38, 3316.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[11]
E. Webster ,
D. A. Ellis ,
L. K. Reid ,
Modeling the environmental fate of perfluorooctanoic acid and perfluorooctanoate: an investigation of the role of individual species partitioning.
Environ. Toxicol. Chem. 2010
, 29, 1466.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[12]
E. Webster ,
D. A. Ellis ,
Potential role of sea spray generation in the atmospheric transport of perfluorocarboxylic acids.
Environ. Toxicol. Chem. 2010
, 29, 1703.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[13]
A. Jahnke ,
L. Ahrens ,
R. Ebinghaus ,
C. Temme ,
Urban versus remote air concentrations of fluorotelomer alcohols and other polyfluorinated alkyl substances in Germany.
Environ. Sci. Technol. 2007
, 41, 745.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[14]
J. L. Barber ,
U. Berger ,
C. Chaemfa ,
S. Huber ,
A. Jahnke ,
C. Temme ,
K. C. Jones ,
Analysis of per- and polyfluorinated alkyl substances in air samples from Northwest Europe.
J. Environ. Monit. 2007
, 9, 530.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[15]
C. J. Young ,
V. I. Furdui ,
J. Franklin ,
R. M. Koerner ,
D. C. Muir ,
S. A. Mabury ,
Perfluorinated acids in arctic snow: new evidence for atmospheric formation.
Environ. Sci. Technol. 2007
, 41, 3455.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[16]
C. R. Hammerschmidt ,
W. F. Fitzgerald ,
Methylmercury in freshwater fish linked to atmospheric mercury deposition.
Environ. Sci. Technol. 2006
, 40, 7764.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[17]
J. G. Wiener ,
B. C. Knights ,
M. B. Sandheinrich ,
J. D. Jeremiason ,
M. E. Brigham ,
D. R. Engstrom ,
L. G. Woodruff ,
W. F. Cannon ,
S. J. Balogh ,
Mercury in soils, lakes, and fish in voyageurs national park (Minnesota): importance of atmospheric deposition and ecosystem factors.
Environ. Sci. Technol. 2006
, 40, 6261.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[18]
J. W. Martin ,
S. A. Mabury ,
K. R. Solomon ,
D. C. G. Muir ,
Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss).
Environ. Toxicol. Chem. 2003
, 22, 196.
| PubMed |
[19]
[20]
L. Ahrens ,
U. Siebert ,
R. Ebinghaus ,
Total body burden and tissue distribution of polyfluorinated compounds in harbor seals (Phoca vitulina) from the German Bight.
Mar. Pollut. Bull. 2009
, 58, 520.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[21]
C. R. Powley ,
S. W. George ,
T. W. Ryan ,
R. C. Buck ,
Matrix effect-free analytical methods for determination of perfluorinated carboxylic acids in environmental matrixes.
Anal. Chem. 2005
, 77, 6353.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[22]
J. P. Giesy ,
K. Kannan ,
Peer reviewed: perfluorochemical surfactants in the environment.
Environ. Sci. Technol. 2002
, 36, 146A.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[23]
S. P. J. Van Leeuwen ,
C. P. Swart ,
J. De Boer ,
Significant improvements in the analysis of perfluorinated compounds in water and fish: results from an interlaboratory method evaluation study.
J. Chromatogr. A 2009
, 1216, 401.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[24]
N. Yamashita ,
K. Kannan ,
S. Taniyasu ,
Y. Horii ,
T. Okazawa ,
G. Petrick ,
T. Gamo ,
Analysis of perfluorinated acids at parts-per-quadrillion levels in seawater using liquid chromatography-tandem mass spectrometry.
Environ. Sci. Technol. 2004
, 38, 5522.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[25]
T. J. Wallington ,
M. D. Hurley ,
J. Xia ,
D. J. Wuebbles ,
S. Sillman ,
A. Ito ,
J. E. Penner ,
D. A. Ellis ,
J. Martin ,
S. A. Mabury ,
O. J. Nielsen ,
M. P. Sulbaek Anderson ,
Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol.
Environ. Sci. Technol. 2006
, 40, 924.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[26]
M. B. Blanco ,
I. Bejan ,
I. Barnes ,
P. Wiesen ,
M. A. Teruel ,
Atmospheric photooxidation of fluoroacetates as a source of fluorocarboxylic acids.
Environ. Sci. Technol. 2010
, 44, 2354.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[27]
A. G. Paul ,
K. C. Jones ,
A. J. Sweetman ,
A first global production, emission, and environmental inventory for perfluorooctane sulfonate.
Environ. Sci. Technol. 2009
, 43, 386.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[28]
V. I. Furdui ,
N. L. Stock ,
D. A. Ellis ,
C. M. Butt ,
D. M. Whittle ,
P. W. Crozier ,
E. J. Reiner ,
D. C. Muir ,
S. A. Mabury ,
Spatial distribution of perfluoroalkyl contaminants in lake trout from the Great Lakes.
Environ. Sci. Technol. 2007
, 41, 1554.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[29]
S.-K. Kim ,
K. Kannan ,
Perfluorinated acids in air, rain, snow, surface runoff, and lakes: relative importance of pathways to contamination of urban lakes.
Environ. Sci. Technol. 2007
, 41, 8328.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[30]
E. Sinclair ,
D. T. Mayack ,
K. Roblee ,
N. Yamashita ,
K. Kannan ,
Occurrence of perfluoroalkyl surfactants in water, fish, and birds from New York State.
Arch. Environ. Contam. Toxicol. 2006
, 50, 398.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[31]
K. Hart ,
K. Kannan ,
L. Tao ,
S. Takashani ,
S. Tanabe ,
Skipjack tuna as a bioindicator of contamination by perfluorinated compounds in the oceans.
Sci. Total Environ. 2008
, 403, 215.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[32]
K. Hart ,
K. Kannan ,
T. Isobe ,
S. Takashani ,
T. Yamada ,
A. Miyazaki ,
S. Tanabe ,
Time trends and transplacental transfer of perfluorinated compounds in melon-headed whales strandes along the Japanese coast in 1982, 2001/2002, and 2006.
Environ. Sci. Technol. 2008
, 42, 7132.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[33]
M. Loewen ,
F. Wania ,
F. Wang ,
G. Tomy ,
Altitudinal transect of atmospheric and aqueous fluorinated organic compounds in western Canada.
Environ. Sci. Technol. 2008
, 42, 2374.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[34]
A. O. De Silva ,
S. A. Mabury ,
Isomer distribution of perfluorocarboxylates in human blood: potential correlation to source.
Environ. Sci. Technol. 2006
, 40, 2903.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[35]
A. O. De Silva ,
J. P. Benskin ,
L. J. Martin ,
G. Arsenault ,
R. McCrindle ,
N. Riddell ,
S. A. Mabury ,
J. W. Martin ,
Disposition of perfluorinated acid isomers in sprague-dawley rats: part 2: subchronic dose.
Environ. Toxicol. Chem. 2009
, 28, 555.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[36]
C. P. Higgins ,
R. G. Luthy ,
Sorption of perfluorinated surfactants on sediment.
Environ. Sci. Technol. 2006
, 40, 7251.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[37]
J. W. Martin ,
M. M. Smithwick ,
B. M. Braune ,
P. F. Hoekstra ,
D. C. G. Muir ,
S. A. Mabury ,
Identification of long-chain perfluorinated acids in biota from the Canadian Arctic.
Environ. Sci. Technol. 2004
, 38, 373.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[38]
P. E. Rasmussen ,
Current methods of estimating atmospheric mercury fluxes in remote areas.
Environ. Sci. Technol. 1994
, 28, 2233.
| Crossref | GoogleScholarGoogle Scholar |
[39]
C. P. Ferrari ,
P.-A. Gauchard ,
K. Aspmo ,
A. Dommergue ,
O. Magand ,
E. Bahlmann ,
S. Nagorski ,
C. Temme ,
R. Ebinghaus ,
A. Steffen ,
C. Banic ,
T. Berg ,
F. Planchon ,
C. Barbante ,
P. Cescon ,
C. F. Boutron ,
Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-Alesund, Svalbard.
Atmos. Environ. 2005
, 39, 7633.
| Crossref | GoogleScholarGoogle Scholar |
[40]