Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Aeolian iron mobilisation by dust–acid interactions and their implications for soluble iron deposition to the ocean: a test involving potential anthropogenic organic acidic species

Chao Luo A B C and Yuan Gao A D
+ Author Affiliations
- Author Affiliations

A Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ 07102, USA.

B Department of Earth and Atmospheric sciences, Cornell University, Ithaca, NY 14853, USA.

C Present address: School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.

D Corresponding author. Email: yuangaoh@andromeda.rutgers.edu

Environmental Chemistry 7(2) 153-161 https://doi.org/10.1071/EN09116
Submitted: 9 November 2009  Accepted: 17 February 2010   Published: 22 April 2010

Environmental context. Studying the input of atmospheric soluble iron to the ocean is important as the soluble form of iron is bioavailable for phytoplankton uptake in the surface ocean to support photosynthesis. In this paper, the effect of organic acidic species on atmospheric iron dissolution is addressed through a global model for the first time. The new results contribute to a better understanding of iron dissolution processes in the atmosphere and the role of atmospheric iron in ocean biogeochemical cycles.

Abstract. Dust deposition is a major source of iron in certain oceanic regions. Many atmospheric processes, such as heterogeneous reactions with acidic species, may convert insoluble iron in dust to soluble forms that become bioavailable for phytoplankton uptake in the surface ocean. Here we report for the first time the effects of organic acidic species on iron dissolution using laboratory-measured conversion rates by oxalate, simulated in a global model to estimate soluble iron fluxes to the ocean. With the complexity and limited data from measurements relating to different sources for oxalate, we focus on the effect of oxalate of anthropogenic origin in this work as a first-step testing, and we apply a scaling factor for oxalate based on its relationship with aerosol sulfate observed by in situ measurements in the continental sites. The results show better correlation with the observations than the work including inorganic acids alone, suggesting the contribution of organic acids to Fe dissolution. However, the simulated iron solubility is lower than that derived from measurements, suggesting additional processes may contribute to Fe dissolution that should be included in the model. Total deposition of soluble iron to the global ocean including the effect by anthropogenic oxalate is ~0.34 Tg year–1.


Acknowledgements

This work was primarily supported by the NASA award NNG04G091G and NSF Award ATM-0737172. Support for model simulations was provided by the Computational & Information Systems Laboratory at National Center for Atmospheric Research. We thank N. Mahowald for valuable comments and techniques on this work, and the exchange of ideas with S.-M Fan was also appreciated. We gratefully acknowledge the constructive comments from two anonymous reviewers that helped us significantly improve this paper.


References


[1]   J. H. Martin , R. M. Gordon , S. E. Fitzwater , The case for iron. Limnol. Oceanogr. 1991 , 36,  1793.
        | Crossref |  open url image1

[2]   P. W. Boyd , A. J. Watson , C. S. Law , E. R. Abraham , T. Trull , R. Murdoch , D. C. E. Bakker , A. R. Bowie , et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 2000 , 407,  695.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[3]   D. G. Capone , J. P. Zehr , H. W. Paerl , B. Bergman , E. J. Carpenter , Trichodesmium, a globally significant marine cyanobacterium. Science 1997 , 276,  1221.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[4]   P. G. Falkowski , R. T. Barber , V. Smetacek , Biogeochemical controls and feedbacks on ocean primary production. Science 1998 , 281,  200.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[5]   N. Lefèvre , A. J. Waterson , Modeling the geochemical cycle of iron in the oceans and its impact on atmospheric CO2 concentrations. Global Biogeochem. Cycles 1999 , 13,  727.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[6]   R. A. Duce , N. W. Tindale , Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceanogr. 1991 , 36,  1715.
        |  CAS | | Crossref |  open url image1

[7]   I. Y. Fung , S. K. Meyn , I. Tegen , S. C. Doney , J. G. John , J. K. B. Bishop , Iron supply and demand in the upper ocean. Global Biogeochem. Cycles 2000 , 14,  281.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[8]   R. H. Byrne , Y. R. Luo , R. W. Young , Iron hydrolysis and solubility revisited: observations and comments on iron hydrolysis characterizations. Mar. Chem. 2000 , 70,  23.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[9]   Y. Chen , R. L. Siefert , Seasonal and spatial distributions and dry deposition fluxes of atmospheric total and labile iron over the tropical and subtropical North Atlantic Ocean. J. Geophys. Res. 2004 , 109,  D09305.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   K. Kuma , J. Nishioka , K. Matsunaga , Controls on iron(III) hydroxide solubility in seawater: the influence of pH and natural organic chelators. Limnol. Oceanogr. 1996 , 41,  396.
        |  CAS |  open url image1

[11]   X. Liu , F. J. Millero , The solubility of iron hydroxide in sodium chloride solutions. Geochim. Cosmochim. Acta 1999 , 63,  3487.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[12]   X. Liu , F. J. Millero , The solubility of iron in seawater. Mar. Chem. 2002 , 77,  43.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[13]   K. Barbeau , E. L. Rue , K. W. Bruland , A. Butler , Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 2001 , 413,  409.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[14]   K. Barbeau , Photochemistry of organic iron(III) complexing ligands in oceanic systems. Photochem. Photobiol. 2006 , 82,  1505.
        |  CAS | PubMed |  open url image1

[15]   A. R. Baker , T. D. Jickells , Mineral particle size as a control on aerosol iron solubility. Geophys. Res. Lett. 2006 , 33,  L17608.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[16]   C. S. Buck , W. M. Landing , J. A. Resing , G. T. Lebon , Aerosol iron and aluminum solubility in the northwest Pacific Ocean: results from the 2002 IOC cruise, 2006. Geochem. Geophys. Geosyst. 2006 , 7,  Q04M07.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   C. I. Measures , W. M. Landing , M. T. Brown , C. S. Buck , High-resolution Al and Fe data from the Atlantic Ocean CLIVAR-CO2 repeat hydrography A16N transect: extensive linkages between atmospheric dust and upper ocean geochemistry. Global Biogeochem. Cycles 2008 , 22,  GB1005.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   J. Wu , R. Rember , C. Cahill , Dissolution of aerosol iron in the surface waters of the North Pacific and North Atlantic oceans as determined by a semicontinuous flow-through reactor method. Global Biogeochem. Cycles 2007 , 21,  GB4010.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   Baker A. R., Croot P. L., Atmospheric and marine controls on aerosol iron solubility in seawater. Mar. Chem. 2008, in press.doi:10.1016/J.MARCHEM.2008.09.003

[20]   Y. G. Zuo , J. Hoigne , Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes. Environ. Sci. Technol. 1992 , 26,  1014.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[21]   R. L. Siefert , S. O. Pehkonen , Y. Erel , M. R. Hoffman , Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids. Geochim. Cosmochim. Acta 1994 , 58,  3271.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[22]   X. Zhu , J. M. Prospero , F. J. Millero , Diel variability of soluble Fe(II) and soluble total Fe in North African dust in the trade winds at Barbados. J. Geophys. Res. 1997 , 102,  21297.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[23]   Y. G. Zuo , J. Hoigne , Photochemical decomposition of oxalic, glyoxalic and pyruvic- acid catalyzed by iron in atmospheric waters. Atmos. Environ. 1994 , 28,  1231.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[24]   Y. G. Zuo , Y. W. Deng , Iron(II)-catalyzed photochemical decomposition of oxalic acid and generation of H2O2 in atmospheric liquid phases. Chemosphere 1997 , 35,  2051.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[25]   W. J. Cooper , E. S. Saltzman , R. G. Zika , The contribution of rainwater to variability in surface ocean hydrogen peroxide. J. Geophys. Res. 1987 , 92,  2970.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[26]   D. S. Cohan , M. G. Schultz , D. J. Jacob , B. G. Heikes , D. R. Blake , Convective injection and photochemical decay of peroxides in the tropical upper troposphere: methyl iodide as a tracer of marine convection. J. Geophys. Res. 1999 , 104,  5717.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[27]   P. L. Croot , P. Strew , I. Peeken , K. Lochte , A. R. Baker , Influence of the ITCZ on H2O2 in near surface waters in the equatorial Atlantic Ocean. Geophys. Res. Lett. 2004 , 31,  L23S04.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   A. M. Johansen , R. L. Siefert , M. R. Hoffman , Chemical composition of aerosol collected over the tropical North Atlantic Ocean. J. Geophys. Res. 2000 , 105,  15277.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[29]   N. Meskhidze , W. L. Chameides , A. Nenes , Dust and pollution: a recipe for enhanced ocean fertilization? J. Geophys. Res. 2005 , 110,  D03301.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[30]   P. N. Sedwick , E. R. Sholkovitz , T. M. Church , Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: evidence from the Sargasso Sea. Geochem. Geophys. Geosyst. 2007 , 8,  Q10Q06.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   E. R. Sholkovitz , P. N. Sedwick , T. M. Church , Influence of anthropogenic combustion emissions on the deposition of soluble aerosol iron to the ocean: empirical estimates for island sites in the North Atlantic. Geochim. Cosmochim. Acta 2009 , 73,  3981.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[32]   F. Solmon , P. Y. Chuang , N. Meskhidze , Y. Chen , Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacific Ocean. J. Geophys. Res. 2009 , 114,  D02305.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[33]   N. Meskhidze , W. L. Chameides , A. Nenes , G. Chen , Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity? Geophys. Res. Lett. 2003 , 30,  2085.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   C. Luo , N. Mahowald , N. Meskhidze , Y. Chen , R. L. Siefert , A. R. Baker , Estimation of iron solubility from observations and a global aerosol model. J. Geophys. Res. 2005 , 110,  D23307.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   S.-M. Fan , W. J. Moxim , H. Levy , Aeolian input of bioavailable iron to the ocean. Geophys. Res. Lett. 2006 , 33,  L07602.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[36]   H. Yang , Y. Gao , Air-to-sea flux of soluble iron: Is it driven more by HNO3 or SO2? An examination in the light of dust aging. Atmos. Chem. Phys. Discuss. 2007 , 7,  10043.
         open url image1

[37]   R. M. Cornell , P. W. Schindler , Photochemical dissolution of goethite in acid/oxalate solution. Clays Clay Miner. 1987 , 35,  347.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[38]   P. Warneck , In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere. Atmos. Environ. 2003 , 37,  2423.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[39]   K. Kawamura , I. R. Kaplan , Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environ. Sci. Technol. 1987 , 21,  105.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[40]   X. F. Huang , J. Z. Yu , Is vehicle exhaust a significant primary source of oxalic acid in ambient aerosols? Geophys. Res. Lett. 2007 , 34,  L02808.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[41]   K. Kawamura , K. Ikushima , Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environ. Sci. Technol. 1993 , 27,  2227.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[42]   K. Kawamura , O. Yasui , Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmos. Environ. 2005 , 39,  1945.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[43]   Y. Zhao , Y. Gao , Mass size distributions of water-soluble inorganic and organic ions in size segregated aerosols over metropolitan Newark in the US east coast. Atmos. Environ. 2008 , 42,  4063.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[44]   M. Mochida , K. Kawamura , N. Umemoto , M. Kobayashi , S. Matsunaga , H.-J. Lim , B. J. Turpin , T. S. Bates , et al. Spatial distributions of oxygenated organic compounds (dicarboxylic acids, fatty acids, and levoglucosan) in marine aerosols over the western Pacific and off the coast of East Asia: continental outflow of organic aerosols during the ACE-Asia campaign. J. Geophys. Res. 2003 , 108,  8638.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[45]   X. H. Yao , A. P. S. Lau , M. Fang , C. K. Chan , M. Hu , Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China: 2-dicarboxylic acids. Atmos. Environ. 2003 , 37,  3001.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[46]   A. Chebbi , P. Carlier , Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review. Atmos. Environ. 1996 , 30,  4233.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[47]   V. M. Kerminen , K. Teinila , R. Hillamo , T. Makela , Size-segregated chemistry of particulate dicarboxylic acids in the Arctic atmosphere. Atmos. Environ. 1999 , 33,  2089.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[48]   B. C. Faust , R. G. Zepp , Photochemistry of aqueous iron(III)–polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters. Environ. Sci. Technol. 1993 , 27,  2517.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[49]   J. D. Blando , B. J. Turpin , Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmos. Environ. 2000 , 34,  1623.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[50]   O. K. Borggaard , Dissolution of poorly crystalline iron oxides in soils by EDTA and oxalate. Zeitschrift für Pflanzenernährung und Bodenkunde 1992 , 155,  431.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[51]   S. Gao , D. A. Hegg , P. V. Bobbs , T. W. Kirchstette , B. I. Magi , M. Sadilek , Water-soluble organic components in aerosols associated with savanna fires in southern Africa: identification, evolution, and distribution. J. Geophys. Res. 2003 , 108,  8491.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[52]   P. J. Rasch , N. M. Mahowald , B. E. Eaton , Representation of transport, convection and hydrologic cycle in chemical transport models: implications for the modeling of short-lived and soluble species. J. Geophys. Res. 1997 , 102,  28127.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[53]   R. Kistler , E. Kalnay , W. Collins , S. Saha , G. White , J. Woollen , M. Chelliah , W. Ebisuzaki , et al. The NCEP-NCAR 5-year reanalysis: monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 2001 , 82,  247.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[54]   C. Zender , H. Bian , D. L. Newman , Mineral dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology. J. Geophys. Res. 2003 , 108,  4416.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[55]   D. A. Gillette , R. Passi , Modeling of dust emission caused by wind erosion. J. Geophys. Res. 1988 , 93,  14233.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[56]   P. Ginoux , M. Chin , I. Tegen , J. Prospero , B. Holben , O. Dubovik , S. J. Lin , Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. 2001 , 106,  20255.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[57]   N. Mahowald , C. Zender , C. Luo , D. Savoie , O. Torres , J. del Corral , Understanding the 30-year Barbados desert dust record. J. Geophys. Res. 2002 , 107,  4561.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[58]   Seinfeld J., Pandis S., Atmospheric Chemistry and Physics: From Air Pollution to Climate Change 1996 (Wiley: New York).

[59]   P. J. Rasch , J. Feichter , K. Law , N. M. Mahowald , J. Penner , A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995. Tellus 2000 , 52B,  1025.
        |  CAS |  open url image1

[60]   C. M. Benkovitz , M. T. Scholtz , J. Pacyna , L. Tarrasón , J. Dignon , E. C. Voldner , P. A. Spiro , J. A. Logan , T. E. Graedel , Global gridded inventories of anthropogenic emissions of sulfur and nitrogen. J. Geophys. Res. 1996 , 101,  29239.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[61]   N. Xu , Y. Gao , Characterization of hematite dissolution affected by oxalate coating, kinetics and pH. Appl. Geochem. 2008 , 23,  783.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[62]   J. Yu , X. Huang , J. Xu , M. Hu , When aerosol sulfate goes up, so does oxalate: implication for the formation mechanisms of oxalate. Environ. Sci. Technol. 2005 , 39,  128.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[63]   X. F. Huang , J. Z. Yu , L. Y. He , Z. Yuan , Water-soluble organic carbon and oxalate in aerosols at a coastal urban site in China: size distribution characteristics, sources, and formation mechanisms. J. Geophys. Res. 2006 , 111,  D22212.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[64]   N. Mahowald , C. Luo , J. del Corral , C. Zender , Interannual variability in atmospheric mineral aerosols from a 22-year model simulation and observational data. J. Geophys. Res. 2003 , 108,  4352.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[65]   G. Sarthou , A. R. Baker , J. Kramer , P. Laan , A. Laës , S. Ussher , E. P. Achterberg , H. J. W. de Baar , K. R. Timmermans , S. Blain , Influence of atmospheric inputs on the iron distribution in the subtropical North-East Atlantic Ocean. Mar. Chem. 2007 , 104,  186.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[66]   E. R. Graber , Y. Rudich , Atmospheric HULIS: how humic-like are they? A comprehensive and critical review. Atmos. Chem. Phys. 2006 , 6,  729.
        |  CAS |  open url image1

[67]   P. Sannigrahi , A. P. Sullivan , R. J. Weber , E. D. Ingall , Characterization of water-soluble organic carbon in urban atmospheric aerosols using solid-state 13C NMR spectroscopy. Environ. Sci. Technol. 2005 , 40,  666.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[68]   R. M. B. O. Duarte , E. B. H. Santos , C. A. Pio , A. C. Duarte , Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances. Atmos. Environ. 2007 , 41,  8100.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1