Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Measurements of nanoparticle number concentrations and size distributions in contrasting aquatic environments using nanoparticle tracking analysis

Julián A. Gallego-Urrea A , Jani Tuoriniemi A , Tobias Pallander A and Martin Hassellöv A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden.

B Corresponding author. Email: martin.hassellov@chem.gu.se

Environmental Chemistry 7(1) 67-81 https://doi.org/10.1071/EN09114
Submitted: 4 September 2009  Accepted: 13 January 2010   Published: 22 February 2010

Environmental context. Manufactured and unintentionally produced nanoparticles have been of environmental concern owing to potential harm to humans and ecosystems, but very little is known of the actual concentrations of these owing to limitations of available methods. In order to understand both the potential adverse effects and the underlying natural processes, improved measurement techniques are needed. Here, we explore the feasibility of a novel minimum perturbation method that relates the diffusive movement of nanoparticles in a light field to their size distributions.

Abstract. A feasibility study of nanoparticle tracking analysis (NTA) for aquatic environmental samples is presented here. The method has certain virtues such as minimum perturbation of the samples, high sensitivity in terms of particle concentration, and provision of number-based size distributions for aquatic samples. NTA gave linear calibration curves in terms of number concentration and accurately reproduced size measurements of certified reference material nanoparticles. However, the accuracy of the size distributions obtained with this method exhibited a high dependence on set-up parameters and the concentrations were shown to be strongly correlated with the refractive index of the material under examination. Different detection cameras and different data acquisition modes were compared and evaluated. Also, the effect of filtration of the samples was assessed. The size distributions for the contrasting environmental samples were fairly reasonable compared with other studies but an underestimation of small sizes was observed, which can be explained by a material-dependent lower detection limit in terms of size. The number concentrations obtained for the natural nanoparticles ranged from 0.5 to 20 × 108 particles mL–1 and correlated well with conventional turbidity measurements.

Additional keywords: aquatic nanoparticles, diffusion, environmental samples, light scattering, turbidity.


Acknowledgements

We thank three anonymous reviewers for constructive comments on this paper. We thank the Swedish Environmental Research Council FORMAS, Gothenburg University Nanoparticle platform and the Research School: Health and the Environment as well as the European Chemical Industry Council for financial support.


References


[1]   Chen H., Roco M. C., Mapping Nanotechnology Innovations and Knowledge: Global and Longitudinal Patent and Literature Analysis 2009 (Springer: New York).

[2]   Filella M., Colloidal properties of submicron particles in natural waters, in Environmental Colloids and Particles: Behaviour, Structure and Characterization (Eds K. J. Wilkinson, J. R. Lead) 2007, pp. 17–93 (Wiley: Chichester, UK).

[3]   Turner D. R., Hunter K. A. (Eds), The Biogeochemistry of Iron in Seawater, 1st edn 2001 (Wiley: Chichester, UK).

[4]   M. Hassellöv , F. von der Kammer , Iron oxides as geochemical nanovectors for metal transport in soil–river systems. Elements 2008 , 4,  401.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   Banfield J. F., Navrotsky A. (Eds), Nanoparticles and the Environment 2001 (The Mineralogy Society of America: Washington, DC).

[6]   M. F. Hochella , S. K. Lower , P. A. Maurice , R. L. Penn , N. Sahai , D. L. Sparks , B. S. Twining , Nanominerals, mineral nanoparticles, and earth systems. Science 2008 , 319,  1631.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[7]   A. S. Madden , M. F. Hochella , A test of geochemical reactivity as a function of mineral size: manganese oxidation promoted by hematite nanoparticles. Geochim. Cosmochim. Acta 2005 , 69,  389.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[8]   M. Auffan , J. Rose , O. Proux , D. Borschneck , A. Masion , P. Chaurand , J.-L. Hazemann , C. Chaneac , J.-P. Jolivet , M. R. Wiesner , A. Van Geen , J.-Y. Bottero , Enhanced adsorption of arsenic onto maghemites nanoparticles: As(III) as a probe of the surface structure and heterogeneity. Langmuir 2008 , 24,  3215.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[9]   Z. Abbas , C. Labbez , S. Nordholm , E. Ahlberg , Size-dependent surface charging of nanoparticles. J. Phys. Chem. C 2008 , 112,  5715.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[10]   P. R. Buseck , K. Adachi , Nanoparticles in the atmosphere. Elements 2008 , 4,  389.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[11]   P. J. J. Alvarez , V. Colvin , J. Lead , V. Stone , Research priorities to advance eco-responsible nanotechnology. ACS Nano. 2009 , 3,  1616.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[12]   A. Malloy , B. Carr , NanoParticle Tracking Analysis – the Halo system. Part. Part. Syst. Char. 2006 , 23,  197.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   Hiemenz P. C., Rajagopalan R., Principles of Colloid and Surface Chemistry, 3rd edn 1997 (Marcel Dekker: New York).

[14]   B. Lyven , M. Hassellov , D. R. Turner , C. Haraldsson , K. Andersson , Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow field-flow fractionation coupled to ICPMS. Geochim. Cosmochim. Acta 2003 , 67,  3791.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[15]   Pettersson T. J. R., Stormwater Ponds for Pollution Reduction 1999, Ph.D. thesis, Chalmers University of Technology, Gothenburg.

[16]   L. J. Gimbert , P. M. Haygarth , R. Beckett , P. J. Worsfold , Comparison of centrifugation and filtration techniques for the size fractionation of colloidal material in soil suspensions using sedimentation field-flow fractionation. Environ. Sci. Technol. 2005 , 39,  1731.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[17]   J. Buffle , K. J. Wilkinson , S. Stoll , M. Filella , J. Zhang , A generalized description of aquatic colloidal interactions: the three-colloidal component approach. Environ. Sci. Technol. 1998 , 32,  2887.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[18]   M. Hassellov , F. von der Kammer , Iron oxides as geochemical nanovectors for metal transport in soil–river systems. Elements 2008 , 4,  401.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   V. Chanudet , V. Filella , Size and composition of inorganic colloids in a peri-alpine, glacial flour-rich lake. Geochim. Cosmochim. Acta 2008 , 72,  1466.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[20]   Hansell D. A., Carlson C. A. (Eds), Biogeochemistry of Marine Dissolved Organic Matter 2002 (Academic Press: San Diego, CA).

[21]   R. Kaegi , A. Ulrich , B. Sinnet , R. Vonbank , A. Wichser , S. Zuleeg , H. Simmler , S. Brunner , H. Vonmont , M. Burkhardt , M. Boller , Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. 2008 , 156,  233.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[22]   Mavrocordatos D., Perret D., Leppard G. G., Strategies and advances in the characterization of environmental colloids by electron microscopy, in Environmental Colloids and Particles: Behaviour, Structure and Characterization (Eds K. J. Wilkinson, J. R. Lead) 2007, pp. 345–404 (Wiley: Chichester, UK).

[23]   Balnois E., Papastavrou G., Wilkinson K. J., Force microscopy and force measurements of environmental colloids, in Environmental Colloids and Particles: Behaviour, Structure and Characterization (Eds K. J. Wilkinson, J. R. Lead) 2007, pp. 405–468 (Wiley: Chichester, UK).

[24]   Kim J. I., Walther C., Laser induced breakdown detection (LIBD), in Environmental Colloids and Particles: Behaviour, Structure and Characterization (Eds K. J. Wilkinson, J. R. Lead) 2007, pp. 555–612 (Wiley: Chichester, UK).

[25]   T. Wagner , T. Bundschuh , R. Schick , R. Koster , Detection of aquatic colloids in drinking water during its distribution via a water pipeline network. Water Sci. Technol. 2004 , 50,  27.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[26]   V. Chanudet , M. Filella , The fate of inorganic colloidal particles in Lake Brienz. Aquat. Sci. 2007 , 69,  199.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[27]   P. Rosse , J. L. Loizeau , Use of single particle counters for the determination of the number and size distribution of colloids in natural surface waters. Colloid. Surf. A 2003 , 217,  109.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[28]   M. L. Wells , E. D. Goldberg , Marine submicron particles. Mar. Chem. 1992 , 40,  5.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[29]   B. Stolpe , M. Hassellöv , Nanofibrils and other colloidal biopolymers binding trace elements in coastal seawater: significance for variations in element size distributions. Limnol. Oceanogr. 2009 ,  55, 187.
         open url image1

[30]   J. P. Kim , J. Lemmon , K. A. Hunter , Size–distribution analysis of submicron colloidal particles in river water. Environ. Technol. 1995 , 16,  861.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[31]   C. Degueldre , A. Bilewicz , W. Hummel , J. L. Loizeau , Sorption behaviour of Am on marl groundwater colloids. J. Environ. Radioact. 2001 , 55,  241.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[32]   M. E. Newman , M. Filella , Y. W. Chen , J. C. Negre , D. Perret , J. Buffle , Submicron particles in the Rhine River. 2. Comparison of field observations and model predictions. Water Res. 1994 , 28,  107.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[33]   C. Walther , S. Buchner , M. Filella , V. Chanudet , Probing particle size distributions in natural surface waters from 15 nm to 2 μm by a combination of LIBD and single-particle counting. J. Colloid Interface Sci. 2006 , 301,  532.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[34]   M. Filella , J. Buffle , Factors controlling the stability of submicron colloids in natural-waters. Colloid. Surf. A 1993 , 73,  255.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[35]   R. F. Domingos , M. A. Baalousha , Y. Ju-Nam , M. M. Reid , N. Tufenkji , J. R. Lead , G. G. Leppard , K. J. Wilkinson , Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ. Sci. Technol. 2009 , 43,  7277.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1