Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Anisole nitration during gamma-irradiation of aqueous nitrite and nitrate solutions: free radical versus ionic mechanisms

Gracy Elias A , Bruce J. Mincher A C , Stephen P. Mezyk B , Thomas D. Cullen B and Leigh R. Martin A
+ Author Affiliations
- Author Affiliations

A Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6180, USA.

B California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA.

C Corresponding author. Email: bruce.mincher@inl.gov

Environmental Chemistry 7(2) 183-189 https://doi.org/10.1071/EN09109
Submitted: 28 August 2009  Accepted: 3 February 2010   Published: 22 April 2010

Environmental context. The nitration of aromatic compounds is an important source of toxic, carcinogenic, and mutagenic species in the atmosphere. Gas phase nitration typically occurs by free radical reactions. Condensed-phase free radical reactions may also be relevant in fog and cloud water in polluted areas, in urban aerosols with low pH, in water treatment using advanced oxidation processes such as e-beam irradiation, and in nuclear waste treatment applications. This paper discusses research towards an improved understanding of nitration of aromatic compounds in the condensed phase under conditions conducive to free radical formation.

Abstract. In the irradiated, acidic condensed phase, radiation-enhanced nitrous acid-catalysed, nitrosonium ion, electrophilic aromatic substitution followed by oxidation reactions dominated over radical addition reactions for anisole. This ionic mechanism would predominate in urban atmospheric aerosols and nuclear fuel dissolutions. Irradiated neutral nitrate anisole solutions were dominated by mixed nitrosonium/nitronium ion electrophilic aromatic substitution reactions, but with lower product yields. Solutions such as these might be encountered in water treatment by e-beam irradiation. Irradiation of neutral nitrite anisole solutions resulted in a statistical substitution pattern for nitroanisole products, suggesting non-electrophilic free radical reactions involving the NO2 radical. Although often proposed as an atmospheric nitrating agent, NO2 radical is unlikely to have an important effect in the acidic condensed phase in the presence of more reactive, competing species such as nitrous acid.

Additional keywords: N-centred radicals, nitronium ion, nitrosonium ion, radical chemistry.


Acknowledgements

This research was funded by the INL-LDRD program, sponsored by the USA Department of Energy (DOE), Office of Nuclear Energy, Science and Technology under DOE Idaho Operations Office contract DE-AC07–99ID13727. Kinetics experiments were performed at the Radiation Laboratory, University of Notre Dame, which is supported by the Office of Basic Energy Sciences, USA Department of Energy. Special thanks are due to H. Sims for helpful discussions concerning the chemistry of irradiated nitric acid.


References


[1]   Olah G. A., Malhotra R., Narang S. C., Nitration, Methods and Mechanisms 1989 (Wiley-VCH: New York). [see pp. 54, 11, 50, 129–134 and references therein]

[2]   D. Vione , V. Maurino , C. Minero , E. Pelizzetti , Nitration and photonitration of naphthalene in aqueous systems. Environ. Sci. Technol. 2005 , 39,  1101.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[3]   D. Vione , V. Maurino , C. Minero , E. Pelizzetti , New processes in the environmental chemistry of nitrite: nitration of phenol upon nitrite photoinduced oxidation. Environ. Sci. Technol. 2002 , 36,  669.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[4]   N. J. Bunce , L. Liu , J. Zhu , D. A. Lane , Reaction of naphthalene and its derivatives with hydroxyl radicals in the gas phase. Environ. Sci. Technol. 1997 , 31,  2252.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   R. Atkinson , J. Arey , B. Zielinska , S. M. Aschmann , Kinetics and products of the gas-phase reactions of OH Radicals and N2O5 with naphthalene and biphenyl. Environ. Sci. Technol. 1987 , 21,  1014.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[6]   P. Neta , R. E. Huie , Rate constants for reactions of NO3 radicals in aqueous solutions. J. Phys. Chem. 1986 , 90,  4644.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   D. Vione , V. Maurino , C. Minero , E. Pelizzetti , Phenol photonitration upon UV irradiation of nitrite in aqueous solution I: Effects of oxygen and 2-propanol. Chemosphere 2001 , 45,  893.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[8]   H. Herrmann , Kinetics of aqueous phase reactions relevant for atmospheric chemistry. Chem. Rev. 2003 , 103,  4691.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[9]   C. N. Kurucz , T. D. Waite , W. J. Cooper , The Miami Electron Beam Research Facility: a large scale wastewater treatment application. Radiat. Phys. Chem. 1995 , 45,  299.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   J. Dzengel , J. Theurich , D. W. Bahnemann , Formation of nitroaromatic compounds in advanced oxidation processes: photoloysis versus photocatalysis. Environ. Sci. Technol. 1999 , 33,  294.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   B. J. Mincher , S. P. Mezyk , W. F. Bauer , G. Elias , C. Riddle , D. R. Peterman , FPEX γ-radiolysis in the presence of nitric acid. Solv. Extr. Ion Exch. 2007 , 25,  593.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   Lamare V., Dozol J. F., Allain F., Virelezier H., Moulin C., Jankowski C., Tabet J. C., Behavior of calix[4]arene crown 6 under irradiation, in ACS Symposium Series 757 (Eds G. J. Lumetta, A. S. Gopalan) 2005, Ch. 5 (American Chemical Society: Washington, DC).

[13]   C. Lamouroux , N. Aychet , A. Lelièvre , C. K. Jankowski , C. Moulin , High performance liquid chromatography with electrospray ionization mass spectroscopy and diode array detection in the identification and quantification of the degradation products of calix[4]arene crown 6 under radiolysis. Rapid Commun. Mass Spectrom. 2004 , 18,  1493.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[14]   Z. Zhou , R. G. Parr , Activation hardness-new index for describing the orientation of electrophilic aromatic-substitution. J. Am. Chem. Soc. 1990 , 112,  5720.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[15]   J. W. Barnett , R. B. Moodie , K. Schofield , J. B. Weston , R. G. Coombes , J. G. Golding , G. D. Tobin , Electrophilic aromatic substitution. Part 16. The nitration of anisole, o-methylanisole, and p-methylanisole in aqueous sulfuric acid. J. Chem. Soc., Perkin Trans. 1977 , II,  248.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[16]   G. A. Olah , N. A. Overchuk , Remarks on the nitronium salt nitration of toluene and benzene. Can. J. Chem. 1965 , 43,  3279.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   G. A. Olah , H. C. Lin , J. A. Olah , S. C. Narang , Electrophilic and free radical nitration of benzene and toluene with various nitrating agents. Proc. Natl. Acad. Sci. USA 1978 , 75,  1045.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   T. A. Turney , G. A. Wright , Nitrous acid and nitrosation. Chem. Rev. 1959 , 59,  497.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   R. M. Schramm , F. H. Westheimer , The mechanism of the nitration of anisole. J. Am. Chem. Soc. 1948 , 70,  1782.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[20]   E. Halfpenny , P. L. Robinson , The nitration and hydroxylation of aromatic compounds by pernitrous acid. J. Chem. Soc. 1952 ,  939.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   A. I. Titov , The free radical mechanism of nitration. Tetrahedron 1963 , 19,  557.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[22]   L. V. Shastri , R. E. Huie , Rate constants for hydrogen abstraction reactions of NO3 in aqueous solution. Int. J. Chem. Kinet. 1990 , 22,  505.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[23]   Y. Katsumura , P. Y. Jiang , R. Nagaishi , T. Oishi , K. Ishigure , Pulse radiolysis study of aqueous nitric acid solutions. Formation, mechanism, yield and reactivity of NO3 radical. J. Phys. Chem. 1991 , 95,  4435.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[24]   G. V. Buxton , C. L. Greenstock , W. P. Helman , A. B. Ross , Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J. Phys. Chem. Ref. Data 1988 , 17,  513.
         open url image1

[25]   S. P. Mezyk , D. M. Bartels , Temperature dependence of hydrogen atom reaction with nitrate and nitrite species in aqueous solution. J. Phys. Chem. A 1997 , 101,  6233.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[26]   J. A. LaVerne , S. M. Pimblott , Yields of hydroxyl radical and hydrated electron scavenging reactions in aqueous solutions of biological interest. Radiat. Res. 1993 , 135,  16.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[27]   Hug G. L., Optical spectra of nonmetallic inorganic transient species in aqueous solution. NSRDS-NBS 69, 1981 (US National Bureau of Standards: washington, DC).

[28]   O. Ito , S. Akiho , M. Iino , Kinetics for reactions of the nitrate radical (NO3) with aldehydes in acetonitrile. J. Phys. Chem. 1989 , 93,  4079.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   E. Baciocchi , T. Del Giacco , S. M. Murgia , G. V. Sebastiani , Rate and mechanism for the reaction of the nitrate radical with aromatic and alkylaromatic compounds in acetonitrile. J. Chem. Soc. Chem. Comm. 1987 ,  1246.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[30]   M. Daniels , Radiation chemistry of the aqueous nitrate system. III. Pulse electron radiolysis of concentrated sodium nitrate solutions. J. Phys. Chem. 1969 , 73,  3710.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   V. A. Benderskii , A. G. Krivenko , E. A. Ponomarev , N. V. Fridovich , Protonation rate constants of the NO32– radical ion. Sov. Electrochem. 1987 , 23,  1343.
         open url image1

[32]   Katsumura Y., NO2 and NO3 radicals in radiolysis of nitric acid solutions, in N-centered radicals 1998, p. 397 (Wiley: New York).

[33]   P. Y. Jiang , R. Nagaishi , T. Yotsuyanagi , Y. Katsumura , I. Ishigure , γ-radiolysis study of concentrated nitric acid solutions. J. Chem. Soc., Faraday Trans. 1994 , 90,  93.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   M. V. Vladimirova , I. A. Kulikov , I. Yu. Savelév , Steady-state concentrations of nitrous acid in γ-irradiated nitric acid solutions. Khimiya Vysokikh Energii 1969 , 3,  526.
         open url image1

[35]   L. R. Dix , R. B. Moodie , Nitrosation and nitrous acid-catalysed nitration of anisole and 2,6-dimethylanisole. J. Chem. Soc., Perkin Trans. 1986 , II,  1097.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[36]   J. H. Atherton , R. B. Moodie , D. R. Noble , B. O. Sullivan , Nitrosation of m-xylene, anisole, 4-nitrophenyl ether and toluene in trifluoroacetic acid or in acetic-sulfuric acid mixtures under nitric oxide. J. Chem. Soc., Perkin Trans. 1997 , II,  663.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   J. H. Ridd , Some unconventional pathways in aromatic nitration. Acta Chem. Scand. A 1998 , 52,  11.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[38]   M. Lehnig , The mechanism of the nitration of donor-activated benzene with nitric and nitrous acid as studied by 15N CIDNP. Tetrahedron Lett. 1999 , 40,  2299.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[39]   E. Kozłowska-Milner , R. K. Broszkiewicz , Pulse radiolysis of HNO3 and HNO3 (aq). Radiat. Phys. Chem. 1978 , 11,  253.
         open url image1

[40]   T. J. Sworski , R. W. Matthews , H. A. Mahlman , Radiation chemistry of concentrated NaNO3 solutions: dependence of G(HNO2) on NaNO3 concentration. Adv. Chem. Ser. 1968 , 82,  164.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[41]   V. M. Grätzel , A. Henglein , J. Lilie , G. Beck , Pulsradiolysische Untersuchung einiger Elementarprozesse der oxydation und reduktion des Nitritions. Ber. Bunsenges. Phys. Chem. 1969 , 73,  646.
         open url image1

[42]   Whitman K., Lyons S., Miller R., Nett D., Treas P., Zante A., Fessenden R. W., Thomas M. D., Wang Y., Linear accelerator for radiation chemistry research at Notre Dame, in IEEE Proceedings of the 16th Conference on Particle Accelerators, Dallas, TX 1995, pp. 131–133 (Institute of Electrical and Electronics Engineers).

[43]   B. J. Mincher , S. P. Mezyk , L. R. Martin , A pulse radiolysis investigation of the reactions of tributyl phosphate with the radical products of aqueous nitric acid irradiation. J. Phys. Chem. A 2008 , 112,  6275.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[44]   G. V. Buxton , C. R. Stuart , Reevaluation of the thiocyanate dosimeter for pulse radiolysis. J. Chem. Soc., Faraday Trans. 1995 , 91,  279.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1