Size distribution and new particle formation in subtropical eastern Australia
Hai Guo A C , Aijun Ding A , Lidia Morawska B , Congrong He B , Godwin Ayoko B , Yok-sheung Li A and Wing-tat Hung AA Regional Air Quality, Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
B International Laboratory for Air Quality and Health, School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, Qld 4001, Australia.
C Corresponding author. Email: ceguohai@polyu.edu.hk
Environmental Chemistry 5(6) 382-390 https://doi.org/10.1071/EN08058
Submitted: 1 September 2008 Accepted: 3 November 2008 Published: 18 December 2008
Environmental context. Atmospheric submicrometre particles have a significant impact on human health, visibility impairment, acid deposition and global climate. This study aims to understand the size distribution of submicrometre particles and new particle formation in eastern Australia and the results indicate that photochemical reactions of airborne pollutants are the main mechanism of new particle formation. The findings will contribute to a better understanding of the effects of aerosols on climate and the reduction of submicrometre particles in the atmosphere.
Abstract. An intensive measurement campaign of particle concentrations, nitrogen oxides and meteorological parameters was conducted at a rural site in subtropical eastern Australia during September 2006. The aim of this work was to develop an understanding of the formation and growth processes of atmospheric aerosols, and the size distributions under various meteorological conditions. In order to achieve this, the origins of air arriving at the site were explored using back trajectories cluster analysis and the diurnal patterns of particle number concentration and size distribution for the classified air masses were investigated. The study showed that the photochemical formation of nucleation mode particles and their consequent growth was often observed. Furthermore, the nucleation mode usually dominated the size distribution and concentration of the photochemical event in the first 3–4 h with a geometric mean diameter of 26.9 nm and a geometric standard deviation of 1.28. The average particle growth rate was estimated to be 1.6 nm h–1, which is lower than that observed at urban sites, but comparable to the values reported in clean environments. The potential precursors of the photochemical events are also discussed.
Additional keywords: back trajectory, particle growth rate, particle size distribution, photochemical event.
Acknowledgements
The field measurements were funded by the Department of Public Works, Queensland Government. The data analysis presented in this paper is supported by the Research Grants Council of the Hong Kong Special Administrative Region (Project No. PolyU 5163/07E), and the Research Grant (87PK) of the Hong Kong Polytechnic University. The technical assistance of Dr Graham Johnson is greatly acknowledged and the authors also thank Ms. Rachael Robinson for her editing.
[1]
[2]
S. A. Twomey ,
M. Piepgrass ,
T. L. Wolfe ,
An assessment of the impact of pollution on global cloud albedo.
Tellus B 1984
, 36, 356.
[Verified 17 November 2008]
[7]
G. McFiggans ,
P. Artaxo ,
U. Baltensperger ,
H. Coe ,
M. C. Facchini ,
G. Feingold ,
S. Fuzzi ,
M. Gysel ,
A. Laaksonen ,
U. Lohmann ,
T. F. Mentel ,
D. M. Murphy ,
C. D. O’Dowd ,
J. R. Snider ,
E. Weingartner ,
The effect of physical and chemical aerosol properties on warm cloud droplet activation.
Atmos. Chem. Phys. 2006
, 6, 2593.
|
CAS |
[Verified 17 November 2008]
[32]
[33]
W. Birmili ,
A. Wiedensohler ,
New particle formation in the continental boundary layer: meteorological and gas phase parameter influence.
Geophys. Res. Lett. 2000
, 27, 3325.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[34]
R. J. Weber ,
P. H. McMurry ,
R. L. Mauldin ,
D. J. Tanner ,
F. L. Eisele ,
A. D. Clarke ,
V. N. Kapustin ,
New particle formation in the remote troposphere: a comparison of observations at various sites.
Geophys. Res. Lett. 1999
, 26, 307.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[35]
C. D. O’Dowd ,
G. McFiggans ,
D. J. Creasey ,
L. Pirjola ,
C. Hoell ,
M. H. Smith ,
B. J. Allan ,
J. M. C. Plane ,
D. E. Heard ,
J. D. Lee ,
M. J. Pilling ,
M. Kulmala ,
On photochemical production of biogenic new particles in the coastal boundary layer.
Geophys. Res. Lett. 1999
, 26, 1707.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[36]
L. Morawska ,
S. Thomas ,
N. Bofinger ,
D. Wainwright ,
D. Neale ,
Comprehensive characterization of aerosols in a subtropical urban atmosphere: Particle size distribution and correlation with gaseous pollutants.
Atmos. Environ. 1998
, 32, 2467.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[37]
S. Henning ,
E. Weingartner ,
S. Schmidt ,
M. Wendisch ,
H. W. Gäggeler ,
U. Baltensperger ,
Size-dependent aerosol activation at the high-alpine site Jungfraujoch (3580 m asl).
Tellus B 2002
, 54, 82.
| Crossref | GoogleScholarGoogle Scholar |
[38]
M. Komppula ,
M. Dal Maso ,
H. Lihavainen ,
P. P. Aalto ,
M. Kulmala ,
Y. Viisanen ,
Comparision of new particle formation events at two locations in northern Finland.
Boreal Environ. Res. 2003
, 8, 395.
|
CAS |
[39]
M. Dal Maso ,
L. Sogacheva ,
P. P. Aalto ,
I. Riipinen ,
M. Komppula ,
P. Tunved ,
L. Korhonen ,
V. Suur-Uski ,
A. Hirsikko ,
T. Kurtén ,
V.-M. Kerminen ,
H. Lihavainen ,
Y. Viisanen ,
H.-C. Hansson ,
M. Kulmala ,
Aerosol size distribution measurements at four Nordic field stations: identification, analysis and trajectory analysis of new particle formation bursts.
Tellus B 2007
, 59, 350.
| Crossref | GoogleScholarGoogle Scholar |
[40]
L. Laakso ,
H. Laakso ,
P. P. Aalto ,
P. Keronen ,
T. Petäjä ,
T. Nieminen ,
T. Pohja ,
E. Siivola ,
M. Kulmala ,
N. Kgabi ,
M. Molefe ,
D. Mabaso ,
D. Phalatse ,
K. Pienaar ,
V.-M. Kerminen ,
Basic characteristics of atmospheric particles, trace gases and meteorology in a relatively clean Southern African Savannah environment.
Atmos. Chem. Phys. 2008
, 8, 4823.
|
CAS |
[41]
R. Griffin ,
D. Cocker ,
J. Seinfeld ,
D. Dabdub ,
Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons.
Geophys. Res. Lett. 1999
, 26, 2721.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[42]
M. Boy ,
M. Kulmala ,
T. M. Ruuskanen ,
M. Pihlatie ,
A. Reissell ,
P. P. Aalto ,
P. Keronen ,
M. Dal Maso ,
H. Hellen ,
H. Hakola ,
R. Jansson ,
M. Hanke ,
F. Arnold ,
Sulfuric acid closure and contribution to nucleation mode particle growth.
Atmos. Chem. Phys. Discuss. 2004
, 4, 6341.
[43]
J. J. Marti ,
R. J. Weber ,
P. H. McMurry ,
New particle formation at a remote continental site: Assessing the contributions of SO2 and organic precursors.
J. Geophys. Res. 1997
, 102, 6331.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[44]
M. R. Stolzenburg ,
P. H. McMurry ,
H. Sakurai ,
J. N. Smith ,
R. L. Mauldin ,
F. L. Eisele ,
C. F. Clement ,
Growth rates of freshly nucleated atmospheric particles in Atlanta.
J. Geophys. Res. 2005
, 110, D22S05.
| Crossref | GoogleScholarGoogle Scholar |
[45]
S. Qian ,
H. Sakurai ,
P. H. McMurry ,
Characteristics of regional nucleation events in urban East St. Louis.
Atmos. Environ. 2007
, 41, 4119.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[46]
V.-M. Kerminen ,
L. Pirjola ,
M. Kulmala ,
How significantly does coagulation scavenging limit atmospheric particle production?
J. Geophys. Res. 2001
, 106, 24119.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[47]
M. Kulmala ,
H. Vehkamäki ,
T. Petäjä ,
M. Dal Maso ,
A. Lauri ,
V.-M. Kerminen ,
W. Birmili ,
P. H. McMurry ,
Formation and growth rates of ultrafine atmospheric particles: a review of observations.
J. Aerosol Sci. 2004
, 35, 143.
| Crossref | GoogleScholarGoogle Scholar |
CAS |