Concentration and biotransformation of arsenic by Prosopis sp. grown in soil treated with chelating agents and phytohormones
Martha Laura López A , José R. Peralta-Videa A , Jason G. Parsons A , Maria Duarte-Gardea C and Jorge L. Gardea-Torresdey A B DA Chemistry Department, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA.
B Environmental Sciences and Engineering PhD Program, University of Texas at El Paso, El Paso, TX 79968, USA.
C Department of Health Promotion, College of Health Sciences, University of Texas at El Paso, Campbell Street, Room 706, El Paso, TX 79902-0581, USA.
D Corresponding author. Email: jgardea@utep.edu
Environmental Chemistry 5(5) 320-331 https://doi.org/10.1071/EN08044
Submitted: 22 July 2008 Accepted: 25 August 2008 Published: 31 October 2008
Environmental context. Arsenic (As) is a metalloid found throughout the environment. Although As can be released from natural phenomena, anthropogenic activities account for most As contamination worldwide. The toxicity of As depends on the form (inorganic or organic) and species (AsIII or AsV), among others. Plants have the ability to absorb and bioreduce As, cleaning the soil and reducing the toxicity of As to some extent. The aim of the present research was to study the effects of cysteine, the chelating agents cyclohexylenedinitrotetraacetic acid and nitrilotriacetic acid, and the phytohormone kinetin on the As concentration and speciation in mesquite (Prosopis sp.). The results give an insight about how a desert plant absorbs, bioreduces, distributes and stores this toxic metalloid.
Abstract. The aim of the present research was to study the effects of cysteine (Cys), cyclohexylenedinitrotetraacetic acid (CDTA), nitrilotriacetic acid (NTA), and kinetin (KN) on the arsenic (As) concentration and speciation in mesquite (Prosopis sp.) grown in soil containing 30 ppm (parts per million) of AsIII or 50 ppm of AsV. Inductively coupled plasma–optical emission spectroscopy (ICP-OES) determinations revealed that, compared with As alone, roots of plants treated with 2.5 mM CDTA or 0.5 mM of Cys + 100 μM KN increased total As concentration from AsIII by ~20 and 36% and from AsV by 100 and 65%, respectively. Liquid chromatography–inductively coupled plasma–mass spectrometry (LC-ICP-MS) studies revealed that in roots, AsIII remained without change, whereas both AsIII and AsV were found in plants grown with AsV. X-ray absorption spectroscopy (XAS) studies revealed that As within plants was mainly coordinated to three sulfur atoms, with interatomic distances of 2.26 Å. Results suggests that Cys + KN increased the mesquite tolerance to AsV, because plants grown in AsV had roots of similar size to plants grown without As.
Additional keywords: DRC ICP-MS, kinetin, metalloid, speciation, XAS.
Acknowledgements
The authors acknowledge the University of Texas at El Paso’s Center for Environmental Resource Management through funding from the Environmental Protection Agency and the National Science Foundation grants 0723115 and 0521650. Jorge Gardea-Torresdey acknowledges the Dudley family for the Endowed Research Professorship in Chemistry and the Library, Equipment, Repair and Rehabilitation and Science and the Technology Acquisition and Retention Program of the University of Texas System. Jorge Gardea-Torresdey also acknowledges the funding from the NSF–EPA-funded UC Center for Environmental Implications of Nanotechnology (grant EF-0830117). Martha L. Lopez also acknowledges the Consejo Nacional de Ciencia y Tecnologia of Mexico (CONACyT) for its financial support.
[1]
A. O. Fayiga ,
L. Q. Ma ,
Q. Zhou ,
Effects of plant arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil.
Environ. Pollut. 2007
, 147, 737.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[2]
Y. Ouyang ,
Phytoextraction: simulating uptake and translocation of arsenic in a soil–plant system.
Int. J. Phytoremediation 2005
, 7, 3.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[3]
J. Huang ,
G. Ilgen ,
Factors affecting arsenic speciation in environmental samples: sample drying and storage.
Int. J. Phytoremediation 2006
, 86, 347.
|
CAS |
[4]
M. Quaghebeur ,
Z. Rengel ,
M. Smirk ,
Arsenic speciation in terrestrial plant material using microwave-assisted extraction, ion chromatography and inductively coupled plasma mass spectrometry.
J. Anal. At. Spectrom. 2003
, 18, 128.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[5]
L. Q. Ma ,
K. M. Komar ,
C. Tu ,
W. Zhang ,
Y. Cai ,
E. D. Kennelley ,
A fern that hyperaccumulates arsenic.
Nature 2001
, 409, 579.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[6]
P. A. Gulz ,
S. K. Gupta ,
R. Schulin ,
Arsenic accumulation of common plants from contaminated soils.
Plant Soil 2005
, 272, 337.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[7]
D. K. Bagga ,
S. Peterson ,
Phytoremediation of arsenic-contaminated soil as affected by the chelating agent CDTA and different levels of soil pH.
Rem. J. 2001
, 12, 77.
[8]
K. K. Chiu ,
Z. H. Ye ,
M. H. Wong ,
Enhanced uptake of As, Zn, and Cu by Vetiveria zizanoides and Zea mays using chelating agents.
Chemosphere 2005
, 60, 1365.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[9]
M. L. López ,
J. R. Peralta-Videa ,
J. G. Parsons ,
T. Benitez ,
J. L. Gardea-Torresdey ,
Gibberellic acid, kinetin, and the mixture indole-3-acetic acid–kinetin assisted with EDTA-induced lead hyperaccumulation in alfalfa plants.
Environ. Sci. Technol. 2007
, 41, 8165.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[10]
X. Zhou ,
K. Yoshida ,
K. Kuroda ,
Y. Endo ,
G. Endo ,
Effects of cysteine on the cytotoxicity of arsenic compounds.
Arch. Environ. Contam. Toxicol. 2003
, 45, 324.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[11]
M. V. Aldrich ,
J. R. Peralta-Videa ,
J. G. Parsons ,
J. L. Gardea-Torresdey ,
Examination of arsenic(III) and (V) uptake by the desert plant species mesquite (Prosopis spp.) using X-ray absorption spectroscopy.
Sci. Total Environ. 2007
, 379, 249.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[12]
N. S. Mokgalaka-Matlala ,
E. Flores-Tavizon ,
H. Castillo-Michel ,
J. R. Peralta-Videa ,
J. L. Gardea-Torresdey ,
Toxicity of arsenic(III) and (V) on plant growth, element uptake, and total amylolitic activity of mesquite (Prosopis juliflora x P. velutina).
Int. J. Phytoremediat. 2008
, 10, 47.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[13]
S. García Salgado ,
M. A. Quijano-Nieto ,
M. M. Bonilla-Simon ,
Determination of soluble toxic arsenic species in alga samples by microwave-assisted extraction and high performance liquid chromatography–hydride generation–inductively coupled plasma–atomic emission spectrometry.
J. Chromatogr. A 2006
, 1129, 54.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[14]
J. Wang ,
F.-J. Zhao ,
A. A. Meharg ,
A. Raab ,
J. Feldmann ,
S. P. McGrath ,
Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake, kinetics, interactions with phosphate, and arsenic speciation.
Plant Physiol. 2002
, 130, 1552.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[15]
E. Smith ,
A. L. Juhasz ,
J. Weber ,
R. Naidu ,
Arsenic uptake and speciation in rice plants grown under greenhouse conditions with arsenic-contaminated irrigation water.
Sci. Total Environ. 2008
, 392, 277.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[16]
J. A. Caruso ,
D. T. Heitkemper ,
C. B’Hymer ,
An evaluation of extraction techniques for arsenic species from freeze-dried apple samples.
Analyst 2001
, 126, 136.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[17]
R. H. Smith ,
T. Murashige ,
Primordial leaf and phytohormone effects on excised shoot apical meristems of Coleus blumei Benth.
Am. J. Bot. 1982
, 69, 1334.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[18]
N. Singh ,
L. Q. Ma ,
Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L.
Environ. Pollut. 2006
, 141, 238.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[19]
X. Zhu ,
N. A. Larsen ,
A. Basran ,
N. C. Bruce ,
I. A. Wilson ,
Observation of an arsenic adduct in an acetyl esterase crystal structure.
J. Biol. Chem. 2003
, 278, 2008.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[20]
F. Degryse ,
E. Smolders ,
D. R. Parker ,
Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions.
Plant Soil 2006
, 289, 171.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[21]
H. S. Lips ,
N. Roth-Bejerano ,
Light and hormones: interchangeability in the induction of nitrate reductase.
Science 1969
, 166, 109.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[22]
D. S. Touw ,
C. E. Nordman ,
J. A. Stuckey ,
V. L. Pecoraro ,
Identifying important structural characteristics of arsenic resistance proteins by using designed three-stranded coiled coils.
Proc. Natl. Acad. Sci. USA 2007
, 104, 11969.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[23]
Z. Zhou ,
Z. Jianmin ,
L. Renying ,
W. Huoyan ,
W. Jinfang ,
Effect of exogenous amino acids on Cu uptake and translocation in maize seedlings.
Plant Soil 2007
, 292, 105.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
J. Qin ,
H. L. Fu ,
J. Ye ,
C. Z. Bencze ,
T. L. Stemmler ,
D. E. Rawlings ,
B. P. Rosen ,
Convergent evolution of a new arsenic binding site in the ArsR/SmtB family of metalloregulators.
J. Biol. Chem. 2007
, 282, 34346.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[25]
A. S. Lukatkin ,
N. V. Gracheva ,
N. N. Grishenkova ,
P. V. Dukhovskis ,
A. A. Brazaitite ,
Cytokinin-like growth regulators mitigate toxic action of zinc and nickel ions on maize seedlings.
Russ. J. Plant Physiol. 2007
, 54, 381.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
C.-L. Luo ,
Z.-G. Shen ,
X.-D. Li ,
Hot NTA application enhanced metal phytoextraction from contaminated soil.
Water Air Soil Pollut. 2008
, 188, 127.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[27]
M. Filek ,
J. Biesaga-Koscielniak ,
I. Marcinska ,
I. Machackova ,
J. Krekule ,
The influence of growth regulators on membrane permeability in cultures of winter wheat cells.
Z. Naturforsch. C. 2004
, 59, 673.
|
CAS |
PubMed |
[28]
D. R. Ellis ,
L. Gumaelius ,
E. Indriolo ,
I. J. Pickering ,
J. A. Bankz ,
D. E. Salt ,
A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata.
Plant Physiol. 2006
, 141, 1544.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[29]
O. P. Dhankher ,
B. P. Rosen ,
E. C. McKinney ,
R. B. Meagher ,
Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2).
Proc. Natl. Acad. Sci. USA 2006
, 103, 5413.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[30]
S. H. Shah ,
I. Ahmad ,
Samiullah ,
Responses of Nigella sativa to foliar application of gibberellic acid and kinetin.
Biol. Plant. 2007
, 51, 563.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[31]
H. Castillo-Michel ,
J. G. Parsons ,
J. R. Peralta-Videa ,
A. Martinez-Martinez ,
K. M. Dokken ,
J. L. Gradea-Torresdey ,
Use of X-ray absorption spectroscopy and biochemical techniques to characterize arsenic uptake and reduction in pea (Pisum sativum) plants.
Plant Physiol. Biochem. 2007
, 45, 457.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[32]
M. Saqid ,
Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations.
Water Air Soil Pollut. 1995
, 93, 117.
[33]
I. J. Pickering ,
R. C. Prince ,
M. J. George ,
R. D. Smith ,
G. N. George ,
D. E. Salt ,
Reduction and coordination of arsenic in Indian mustard.
Plant Physiol. 2000
, 122, 1171.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[34]
J. G. Parsons ,
A. Martinez-Martinez ,
J. R. Peralta-Videa ,
J. L. Gardea-Torresdey ,
Speciation and uptake of arsenic accumulated by corn seedlings using XAS and DRC-ICP-MS.
Chemosphere 2008
, 70, 2076.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[35]
[36]
J. R. Peralta-Videa ,
J. L. Gardea-Torresdey ,
E. Gomez ,
K. J. Tiemann ,
J. G. Parsons ,
G. Carrillo ,
Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake.
Environ. Pollut. 2002
, 119, 291.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[37]
H. Gurleyuk ,
R. C. Brunette ,
C. R. Howard ,
C. Schneider ,
R. Thomas ,
Using dynamic reaction cell ICP-MS technology to determine the full suite of elements in rainwater samples.
Spectroscopy 2005
, 20, 24.
|
CAS |
[38]
T. Ressler ,
WinXAS: a new software package not only for the analysis of energy-dispersive XAS data.
Journal de Physique IV 1997
, 7, 269.
|
CAS |
[39]
J. G. Parsons ,
M. V. Aldrich ,
J. L. Gardea-Torresdey ,
Environmental and biological applications of extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies.
Appl. Spectrosc. Rev. 2002
, 37, 187.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[40]
C. J. Bouyoucos ,
The hydrometer method for making mechanical analysis of soils.
Soil Sci. 1934
, 38, 335–343.
|
CAS |