Plankton modelling and CLAW
Roger Cropp A C and John Norbury BA Centre for Environmental Systems Research, Griffith University, Brisbane, Qld 4111, Australia.
B Mathematical Institute, University of Oxford, 24–29 St Giles, Oxford, OX1 3LB, UK.
C Corresponding author. Email: r.cropp@griffith.edu.au
Environmental Chemistry 4(6) 388-390 https://doi.org/10.1071/EN07079
Submitted: 24 October 2007 Accepted: 7 November 2007 Published: 6 December 2007
Environmental context. The prospect of human-induced climate change provides a compelling imperative for an improved understanding of living systems, especially those involving ocean plankton that are proposed to have an important role in regulating climate. Ecosystems are complex, adaptive systems and mathematical modelling has proved to be a powerful tool in understanding such systems. The present article considers some of the fundamental issues currently constraining such understanding with particular consideration to modelling ecosystems that underpin the CLAW hypothesis and how they might behave in response to global warming.
[1]
M. Legrand ,
C. Feniet-Saigne ,
E. S. Saltzman ,
C. Germain ,
N. I. Barkov ,
V. N. Petrov ,
Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle.
Nature 1991
, 350, 144.
| Crossref | GoogleScholarGoogle Scholar |
[2]
[3]
R. A. Cropp ,
J. Norbury ,
A. Gabric ,
R. Braddock ,
Modeling dimethylsulphide production in the upper ocean.
Global Biogeochem. Cy. 2004
, 18, GB3005.
| Crossref | GoogleScholarGoogle Scholar |
[4]
A. J. Gabric ,
N. Murray ,
L. Stone ,
M. Kohl ,
Modeling the production of dimethylsulfide during a phytoplankton bloom.
J. Geophys. Res. 1993
, 98, 22805.
[5]
M. G. Lawrence ,
An empirical analysis of the strength of the phytoplankton–dimethylsulfide–cloud–climate feedback cycle.
J. Geophys. Res. 1993
, 98, 20663.
[6]
S. D. Archer ,
F. J. Gilbert ,
J. I. Allen ,
J. Blackford ,
P. D. Nightingale ,
Modelling the seasonal patterns of dimethylsulfide production and fate during 1989 at a site in the North Sea.
Can. J. Fish. Aquat. Sci. 2004
, 61, 765.
| Crossref | GoogleScholarGoogle Scholar |
[7]
[8]
K. D. Six ,
E. Maier-Reimer ,
What controls the oceanic dimethylsulphide (DMS) cycle? A modeling approach.
Global Biogeochem. Cy. 2006
, 20, GB4011.
| Crossref | GoogleScholarGoogle Scholar |
[9]
R. Simó ,
C. Pedros-Alio ,
Role of vertical mixing in controlling the oceanic production of dimethyl sulphide.
Nature 1999
, 402, 396.
| Crossref | GoogleScholarGoogle Scholar |
[10]
H. U. Sverdrup ,
On conditions for the vernal blooming of phytoplankton.
J. Conseil. Perm. Int. Explor. Mer. 1953
, 18, 287.
[11]
D. A. Siegel ,
S. C. Doney ,
J. A. Yoder ,
The North Atlantic spring phytoplankton bloom and Sverdrup’s critical depth hypothesis.
Science 2002
, 296, 730.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[12]
W. Sunda ,
D. J. Kieber ,
R. P. Kiene ,
S. Huntsman ,
An antioxidant function for DMSP and DMS in marine algae.
Nature 2002
, 418, 317.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[13]
S. Vallina ,
R. Simó ,
Strong relationship between DMS and the solar radiation dose over the global surface ocean.
Science 2007
, 315, 506.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[14]
S. M. Vallina ,
R. Simó ,
T. R. Anderson ,
A. Gabric ,
R. A. Cropp ,
J. M. Pacheco ,
A dynamic model of ocean sulfur (DMOS) applied to the Sargasso Sea: simulating the dimethylsulfide (DMS) summer paradox.
J. Geophys. Res. 2007
,
in press.