Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Plankton modelling and CLAW

Roger Cropp A C and John Norbury B
+ Author Affiliations
- Author Affiliations

A Centre for Environmental Systems Research, Griffith University, Brisbane, Qld 4111, Australia.

B Mathematical Institute, University of Oxford, 24–29 St Giles, Oxford, OX1 3LB, UK.

C Corresponding author. Email: r.cropp@griffith.edu.au

Environmental Chemistry 4(6) 388-390 https://doi.org/10.1071/EN07079
Submitted: 24 October 2007  Accepted: 7 November 2007   Published: 6 December 2007

Environmental context. The prospect of human-induced climate change provides a compelling imperative for an improved understanding of living systems, especially those involving ocean plankton that are proposed to have an important role in regulating climate. Ecosystems are complex, adaptive systems and mathematical modelling has proved to be a powerful tool in understanding such systems. The present article considers some of the fundamental issues currently constraining such understanding with particular consideration to modelling ecosystems that underpin the CLAW hypothesis and how they might behave in response to global warming.


References


[1]   M. Legrand , C. Feniet-Saigne , E. S. Saltzman , C. Germain , N. I. Barkov , V. N. Petrov , Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle. Nature 1991 , 350,  144.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[2]   Denman K. L., Brasseur G., Chidthaisong A., Ciais P., Cox P. M., Dickinson R. E., Hauglustaine D., Heinze C., et al., Couplings between changes in the climate system and biogeochemistry, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller) 2007 (Cambridge University Press: New York).

[3]   R. A. Cropp , J. Norbury , A. Gabric , R. Braddock , Modeling dimethylsulphide production in the upper ocean. Global Biogeochem. Cy. 2004 , 18,  GB3005.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   A. J. Gabric , N. Murray , L. Stone , M. Kohl , Modeling the production of dimethylsulfide during a phytoplankton bloom. J. Geophys. Res. 1993 , 98,  22805.
         open url image1

[5]   M. G. Lawrence , An empirical analysis of the strength of the phytoplankton–dimethylsulfide–cloud–climate feedback cycle. J. Geophys. Res. 1993 , 98,  20663.
         open url image1

[6]   S. D. Archer , F. J. Gilbert , J. I. Allen , J. Blackford , P. D. Nightingale , Modelling the seasonal patterns of dimethylsulfide production and fate during 1989 at a site in the North Sea. Can. J. Fish. Aquat. Sci. 2004 , 61,  765.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   Chu S., Elliott S., Toward global dynamic sulfur cycle simulation in the Parallel Ocean Program, in Environmental Sciences and Environmental Computing (Eds P. Zannetti, D. Rouson, S. Elliott) 2007 (The EnviroComp Institute and the Air & Waste Management Association: Pittsburgh, PA, USA).

[8]   K. D. Six , E. Maier-Reimer , What controls the oceanic dimethylsulphide (DMS) cycle? A modeling approach. Global Biogeochem. Cy. 2006 , 20,  GB4011.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   R. Simó , C. Pedros-Alio , Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature 1999 , 402,  396.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   H. U. Sverdrup , On conditions for the vernal blooming of phytoplankton. J. Conseil. Perm. Int. Explor. Mer. 1953 , 18,  287.
         open url image1

[11]   D. A. Siegel , S. C. Doney , J. A. Yoder , The North Atlantic spring phytoplankton bloom and Sverdrup’s critical depth hypothesis. Science 2002 , 296,  730.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[12]   W. Sunda , D. J. Kieber , R. P. Kiene , S. Huntsman , An antioxidant function for DMSP and DMS in marine algae. Nature 2002 , 418,  317.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[13]   S. Vallina , R. Simó , Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 2007 , 315,  506.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[14]   S. M. Vallina , R. Simó , T. R. Anderson , A. Gabric , R. A. Cropp , J. M. Pacheco , A dynamic model of ocean sulfur (DMOS) applied to the Sargasso Sea: simulating the dimethylsulfide (DMS) summer paradox. J. Geophys. Res. 2007 , in press.
         open url image1