The iron CLAW
Mike HarveyNational Institute of Water and Atmospheric Research, PO Box 14-901, Kilbirnie, Wellington, New Zealand. Email: m.harvey@niwa.co.nz
Environmental Chemistry 4(6) 396-399 https://doi.org/10.1071/EN07066
Submitted: 14 September 2007 Accepted: 28 October 2007 Published: 6 December 2007
Environmental context. A ‘climate stabilising’ feedback system known as the CLAW hypothesis, which involves the phytoplankton driven influence on cloud reflectivity through the cycling of sulfur was proposed ~20 years ago, and because of its complexity, it remains unproven today. Since the CLAW proposal, experiments that have added iron to the ocean have proven that iron can significantly limit phytoplankton productivity and can also affect the marine sulfur cycle in a complex manner. Because of a range of possible feedbacks between iron, sulfur and climate, it is likely that future advances in understanding the CLAW hypothesis will require a comprehensive process-based description that can be tested in fully coupled earth-system models.
Acknowledgements
The work is supported by the New Zealand Foundation for Research, Science and Technology contract CO1X0703 – Drivers and Mitigation of Global Change. The author thanks reviewers for helpful suggestions.
[1]
R. J. Charlson ,
J. E. Lovelock ,
M. O. Andreae ,
S. G. Warren ,
Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate.
Nature 1987
, 326, 655.
| Crossref | GoogleScholarGoogle Scholar |
[2]
G. E. Shaw ,
Biologically controlled thermostasis involving the sulfur cycle.
Clim. Change 1983
, 5, 297.
| Crossref | GoogleScholarGoogle Scholar |
[3]
[4]
G. P. Ayers ,
J. P. Ivey ,
R. W. Gillett ,
Coherence between seasonal cycles of dimethylsulfide, methanesulfonate, and sulfate in Marine Air.
Nature 1991
, 349, 404.
| Crossref | GoogleScholarGoogle Scholar |
[5]
R. Boers ,
G. P. Ayers ,
J. L. Gras ,
Coherence between seasonal variation in satellite-derived cloud optical depth and boundary layer CCN concentrations at a mid-latitude Southern Hemisphere station.
Tellus B 1994
, 46, 123.
| Crossref |
[6]
G. P. Ayers ,
J. L. Gras ,
Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air.
Nature 1991
, 353, 834.
| Crossref | GoogleScholarGoogle Scholar |
[7]
S. S. Yum ,
J. G. Hudson ,
Wintertime/summertime contrasts of cloud condensation nuclei and cloud microphysics over the Southern Ocean.
J. Geophys. Res. 2004
, 109(D6), D06204.
| Crossref | GoogleScholarGoogle Scholar |
[8]
M. A. Wetzel ,
L. L. Stowe ,
Satellite-observed patterns in stratus microphysics, aerosol optical thickness, and shortwave radiative forcing.
J. Geophys. Res. 1999
, 104(D24), 31287.
| Crossref | GoogleScholarGoogle Scholar |
[9]
R. A. Cropp ,
A. J. Gabric ,
G. H. McTainsh ,
R. D. Braddock ,
N. Tindale ,
Coupling between ocean biota and atmospheric aerosols: Dust, dimethylsulphide, or artefact?
Global Biogeochem. Cy. 2005
, 19, GB4002.
| Crossref | GoogleScholarGoogle Scholar |
[10]
S. M. Vallina ,
R. Simó ,
S. Gassó ,
C. de Boyer-Montégut ,
E. del Río ,
E. Jurado ,
J. Dachs ,
Analysis of a potential “solar radiation dose-dimethylsulfide-cloud condensation nuclei” link from globally mapped seasonal correlations.
Global Biogeochem. Cy. 2007
, 21, GB2004.
| Crossref | GoogleScholarGoogle Scholar |
[11]
J. R. Gunson ,
S. A. Spall ,
T. R. Anderson ,
A. Jones ,
I. J. Totterdell ,
M. J. Woodage ,
Climate sensitivity to ocean dimethylsulphide emissions.
Geophys. Res. Lett. 2006
, 33, L07701.
| Crossref | GoogleScholarGoogle Scholar |
[12]
[13]
J. H. Martin ,
Glacial–interglacial CO2 change: the iron hypothesis.
Paleoceanography 1990
, 5, 1.
[14]
H. J. W. de Baar ,
P. W. Boyd ,
K. H. Coale ,
M. R. Landry ,
A. Tsuda ,
P. Assmy ,
et al. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment.
J. Geophys. Res. 2005
, 110, C09S16.
| Crossref | GoogleScholarGoogle Scholar |
[15]
S. M. Vallina ,
R. Simó ,
Strong relationship between DMS and the solar radiation dose over the global surface ocean.
Science 2007
, 315, 506.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[16]
S. M. Turner ,
M. J. Harvey ,
C. S. Law ,
P. D. Nightingale ,
P. S. Liss ,
Iron-induced changes in oceanic sulfur biogeochemistry.
Geophys. Res. Lett. 2004
, 31, L14307.
| Crossref | GoogleScholarGoogle Scholar |
[17]
M. P. Gall ,
P. W. Boyd ,
J. Hall ,
K. A. Safi ,
H. Chang ,
Phytoplankton processes. Part 1: community structure during the Southern Ocean Iron RElease Experiment (SOIREE).
Deep-sea Res. II 2001
, 48, 2551.
| Crossref | GoogleScholarGoogle Scholar |
[18]
P. W. Boyd ,
T. Jickells ,
C. S. Law ,
S. Blain ,
E. A. Boyle ,
K. O. Buesseler ,
K. H. Coale ,
J. J. Cullen ,
et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions.
Science 2007
, 315, 612.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[19]
Y. Le Clainche ,
M. Levasseur ,
A. Vézina ,
R.-C. Bouillon ,
A. Merzouk ,
S. Michaud ,
M. Scarratt ,
C. S. Wong ,
et al. Modeling analysis of the effect of iron enrichment on dimethyl sulfide dynamics in the NE Pacific (SERIES experiment).
J. Geophys. Res. 2006
, 111(C1), C01011.
| Crossref | GoogleScholarGoogle Scholar |
[20]
S. Blain ,
B. Quéguiner ,
L. Armand ,
S. Belviso ,
B. Bombled ,
L. Bopp ,
A. Bowie ,
C. Brunet ,
et al. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean.
Nature 2007
, 446, 1070.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[21]
E. W. Wolff ,
H. Fischer ,
F. Fundel ,
U. Ruth ,
B. Twarloh ,
G. C. Littot ,
R. Mulvaney ,
R. Röthlisberger ,
et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles.
Nature 2006
, 440, 491.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[22]
F. Joos ,
J. Sarmiento ,
U. Siegenthaler ,
Estimates of the effect of Southern Ocean iron fertilisation on atmospheric CO2 concentrations.
Nature 1991
, 349, 772.
| Crossref | GoogleScholarGoogle Scholar |
[23]
A. J. Watson ,
D. C. E. Bakker ,
A. J. Ridgwell ,
P. W. Boyd ,
C. S. Law ,
Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2.
Nature 2000
, 407, 730.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[24]
K. E. Kohfeld ,
C. Le Quéré ,
S. P. Harrison ,
R. F. Anderson ,
Role of marine biology in glacial–interglacial CO2 cycles.
Science 2005
, 308, 74.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[25]
M. R. Legrand ,
R. J. Delmas ,
R. J. Charlson ,
Climate forcing implications from Vostok ice-core sulphate data.
Nature 1988
, 334, 418.
| Crossref | GoogleScholarGoogle Scholar |
[26]
M. Legrand ,
S. C. Feniet ,
E. S. Saltzman ,
C. Germain ,
N. I. Barkov ,
V. N. Petrov ,
Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle.
Nature 1991
, 350, 144.
| Crossref | GoogleScholarGoogle Scholar |
[27]
N. Meskhidze ,
W. L. Chameides ,
A. Nenes ,
G. Chen ,
Iron mobilisation in mineral dust: can anthropogenic SO2 emissions affect ocean productivity.
Geophys. Res. Lett. 2003
, 30, 2085.
| Crossref | GoogleScholarGoogle Scholar |
[28]
D. S. Mackie ,
J. M. Peat ,
G. H. McTainsh ,
P. W. Boyd ,
K. A. Hunter ,
Soil abrasion and eolian dust production: Implications for iron partitioning and solubility.
Geochem. Geophy. Geosy. 2006
, 7,
[29]
M. J. Behrenfeld ,
R. T. O'Malley ,
D. A. Siegel ,
C. R. McClain ,
J. L. Sarmiento ,
G. C. Feldman ,
A. J. Milligan ,
P. G. Falkowski ,
et al. Climate-driven trends in contemporary ocean productivity.
Nature 2006
, 444, 752.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[30]
[31]
G. E. Shaw ,
R. L. Benner ,
W. Cantrell ,
A. D. Clarke ,
On the regulation of climate: A sulfate particle feedback loop involving deep convection.
Clim. Change 1998
, 39, 23.
| Crossref | GoogleScholarGoogle Scholar |
[32]
S. M. Vallina ,
R. Simo ,
M. Manizza ,
Weak response of oceanic dimthylsulfide to upper mixing shoaling induced by global warming.
Proc. Natl. Acad. Sci. USA 2007
, 104, 16004.
| Crossref | GoogleScholarGoogle Scholar |
[33]
O. W. Wingenter ,
K. B. Haase ,
M. Zeigler ,
D. R. Blake ,
F. S. Rowland ,
B. C. Sive ,
A. Paulino ,
R. Thyrhaug ,
et al. Unexpected consequences of increasing CO2 and ocean acidity on marine production of DMS and CH2ClI: Potential climate impacts.
Geophys. Res. Lett. 2007
, 34, L05710.
| Crossref | GoogleScholarGoogle Scholar |
[34]
G. P. Ayers ,
J. M. Cainey ,
R. W. Gillett ,
J. P. Ivey ,
Atmospheric sulphur and cloud condensation nuclei in marine air in the Southern Hemisphere.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 1997
, 352, 203.
| Crossref | GoogleScholarGoogle Scholar |
[35]
Y. J. Yoon ,
P. Brimblecombe ,
Modelling the contribution of sea salt and dimethyl sulfide derived aerosol to marine CCN.
Atmos. Chem. Phys. 2002
, 2(1), 17.
[36]
P. W. Boyd ,
S. C. Doney ,
Modelling regional responses by marine pelagic ecosystems to global climate change.
Geophys. Res. Lett. 2002
, 29, 1806.
| Crossref | GoogleScholarGoogle Scholar |
[37]
R. G. Zepp ,
T. V. Callaghan ,
D. J. Erickson ,
Effects of enhanced solar ultraviolet radiation on biogeochemical cycles.
J. Photochem. Photobiol. B 1998
, 46, 69.
| Crossref | GoogleScholarGoogle Scholar |
[38]
P. F. Caffrey ,
W. A. Hoppel ,
J. J. Shi ,
A one-dimensional sectional aerosol model integrated with mesoscale meteorological data to study marine boundary layer aerosol dynamics.
J. Geophys. Res. 2006
, 111(D24), D24201.
| Crossref | GoogleScholarGoogle Scholar |
[39]
N. Meskhidze ,
A. Nenes ,
Phytoplankton and cloudiness in the southern ocean.
Science 2006
, 314, 1419.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[40]
O. W. Wingenter ,
N. Meskhidze ,
A. Nenes ,
Isoprene, cloud droplets, and phytoplankton.
Science 2007
, 317, 42b.
| Crossref | GoogleScholarGoogle Scholar |
[41]
J. Stefels ,
M. Steinke ,
S. Turner ,
G. Malin ,
S. Belviso ,
Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling.
Biogeochemistry 2007
, 83, 245.
| Crossref | GoogleScholarGoogle Scholar |
[42]
C. Le Quéré ,
S. P. Harrison ,
I. C. Prentice ,
E. T. Buitenhuis ,
O. Aumont ,
L. Bopp ,
H. Claustre ,
L. Cotrim Da Cunha ,
et al. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models.
Glob. Change Biol. 2005
, 11, 2016.
| Crossref | GoogleScholarGoogle Scholar |