Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Efficacy of soluble sodium tripolyphosphate amendments for the in-situ immobilisation of uranium

Dawn M. Wellman A C , Eric M. Pierce A and Michelle M. Valenta B
+ Author Affiliations
- Author Affiliations

A Pacific Northwest National Laboratory, Applied Geology and Geochemistry, PO Box 999, K3-62, Richland, WA 99354, USA.

B Pacific Northwest National Laboratory, Applied Geology and Geochemistry, PO Box 999, P7-22, Richland, WA 99354, USA.

C Corresponding author. Email: dawn.wellman@pnl.gov

Environmental Chemistry 4(5) 293-300 https://doi.org/10.1071/EN07030
Submitted: 5 April 2007  Accepted: 12 September 2007   Published: 2 November 2007

Environmental context. Contamination of groundwater and sediments by heavy metals and radioactive metals is a significant problem within the United States Department of Energy complex as a result of past nuclear operations. One way to remediate these metals is through reaction with phosphate compounds, which can immobilise the metals by forming highly stable metal phosphate compounds. Long-chain, water-soluble phosphate compounds provide a means to inject phosphate into subsurface contaminant plumes, to precipitate metal ions from solution. Results presented here illustrate that application of a soluble sodium tripolyphosphate to sediment contaminated with uranium will rapidly reduce the concentration of uranium in the pore water to concentrations near or below drinking water limits under water-saturated and unsaturated conditions.

Abstract. A series of conventional water-saturated and pressurised unsaturated flow column experiments were conducted to evaluate the effects of using soluble polyphosphate amendments for in-situ, subsurface remediation of uranium. Experiments were conducted under mildly alkaline, calcareous conditions, representative of conditions commonly encountered at sites across the arid western United States. Results presented here illustrate that application of a soluble polyphosphate amendment to sediment contaminated with uranium will rapidly reduce the concentration of uranium released to the porewater to near or below drinking water limits under water-saturated and -unsaturated conditions. Column experiments conducted in the absence of polyphosphate illustrate sustained release of aqueous uranium at concentrations well above drinking water standards in excess of over 25 pore volumes under water-saturated conditions and over 50 pore volumes under unsaturated conditions. In the presence of tripolyphosphate, the concentration of aqueous uranium released from the sediment was below drinking water limits within 10 to 35 pore volumes under water-saturated and unsaturated conditions, respectively. Moreover, results indicate the necessity of conducting site-specific dynamic tests to tailor phosphate-based remediation technology to site specific geochemical and hydrological conditions.

Additional keywords: contaminant fate, phosphate, remediation, sediment, uranium, water treatment.


Acknowledgments

This work was conducted at Pacific Northwest National Laboratory, operated by Battelle Memorial Institute for the USA Department of Energy under Contract DE-AC05–76RL01830. Funding for this project was provided by the USA Department of Energy, Office of Environmental Management, EM-20 Environmental Cleanup and Acceleration. We greatly appreciate the assistance of L. E. Kathmann in preparation of this manuscript. The assistance of E. T. Clayton for conducting ICP-MS and S. R. Baum for ICP-OES analyses is greatly appreciated.


References


[1]   Young J. S., Fruchter J. S., Addendum to data compilation task report for the source investigation of the 300-FF-1 operable unit phase I remedial investigations, EMO-1026 1991 (U.S. Department of Energy, Environmental Management Operations: Richland, WA).

[2]   Gerber M. S., Past practices technical characterization study – 300 area – Hanford site, WHC-MR-0388 1992 (Westinghouse Hanford Company: Richland, WA).

[3]   DeFord D. H., Carpenter R. W., Finan M. W., 300-FF-2 operable unit technical baseline report, BHI-00012, Rev. 00 1994 (Bechtel Hanford, Inc.: Richland, WA).

[4]   Peterson R. E., Freeman E. J., Murray C. J., Peterson R. E., Thorne P. D., Truex M. J., Vermeul V. R., Williams M. D., Yabusaki S. B., Zachara J. M., Lindberg J. L., McDonald J. P., Contaminants of potential concern in the 300-FF-5 operable unit: Expanded annual groundwater report for FY 2004, PNNL-15127 2005 (Pacific Northwest National Laboratory: Richland, WA).

[5]   DOE, Fiscal year 1998 annual summary report for the 200-UP-1, 200-ZP-1, and 100-NR-2 pump-and-treat operations and operable units 1999 (U.S. Department of Energy: Richland, WA).

[6]   D. Langmuir , Uranium solution-mineral equilbria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta 1978 , 42,  547.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   Langmuir D., in Aqueous environmental chemistry (Ed. R. McConnin) 1997, p. 494 (Prentice-Hall: Upper Saddle River).

[8]   H. Isobe , T. Murakami , R. Ewing , Alteration of uranium minerals in the Koongarra deposit, Australia: Unweathered zone. J. Nucl. Mater. 1992 , 190,  174.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   T. Murakami , T. Ohnuki , H. Isobe , T. Sato , Mobility of uranium during weathering. Am. Mineral. 1997 , 82,  888.
         open url image1

[10]   J. L. Jerden , A. K. Sinha , L. W. Zelazny , Natural immobilization of uranium by phosphate mineralization in an oxidizing saprolite-soil profile: Chemical weathering of the Coles Hill uranium deposit, Virginia. Chem. Geol. 2003 , 199,  129.
         open url image1

[11]   R. J. Finch , M. L. Miller , R. C. Ewing , Weathering of natural uranyl oxide hydrates: Schoepite polytypes and dehydration effects. Radiochim. Acta 1992 , 58/59,  433.
         open url image1

[12]   P. M. Bertsch , D. B. Hunter , S. R. Sutton , S. Bajt , M. L. Rivers , In situ chemical speciation of uranium in soils and sediments by micro x-ray absorption spectroscopy. Environ. Sci. Technol. 1994 , 28,  980.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   E. C. Buck , N. R. Brown , N. L. Dietz , Contaminant uranium phases and leaching at the Fernald site in Ohio. Environ. Sci. Technol. 1995 , 30,  81.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   Buck E. C., Dietz N. L., Bates J. K., Cunnane J. C., Uranium-contaminated soils: Ultramicrotome and electron beam analysis, ANL/CMT/PP-82412 1994 (Argonne National Laboratory: Argonne, IL).

[15]   Buck E. C., Dietz N. L., Fortner J. A., Bates J. K., Brown N. R., Characterization of uranium- and plutonium-contaminated soils by electron microscopy, ANL/CMT/CP-85758; CONF-950216-65 1995 (Argonne National Laboratory: Argonne, IL).

[16]   M. P. Elless , S. Y. Lee , Uranium solubility of carbonate-rich uranium-contaminated soils. Water Air Soil Pollut. 1998 , 107,  147.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   D. E. Morris , P. G. Allen , J. M. Berg , C. J. Chisholm-Brause , S. D. Conradson , R. J. Donohoe , N. J. Hess , J. A. Musgrave , et al. Speciation of uranium in Fernald soils by molecular spectroscopic methods: Characterization of untreated soils. Environ. Sci. Technol. 1996 , 30,  2322.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   V. C. Tidwell , D. E. Morris , J. C. Cunnane , S. Y. Lee , Characterizing soils contaminated with heavy metals: a uranium contamination case study. Rem. J. 1996 , 6,  81.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   J. Jeanjean , J. C. Rouchaud , L. Tran , M. Fedoroff , Sorption of uranium and other heavy metals on hydroxyapatite. J. Radioan. Nucl. Ch. Le. 1995 , 201,  529.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   P. Thakur , R. C. Moore , G. R. Choppin , Sorption of U(VI) species on hydroxyapatite. Radiochim. Acta 2005 , 93,  385.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   J. S. Arey , J. C. Seaman , P. M. Bertsch , Immobilization of uranium in contaminated sediments by hydroxyapatite addition. Environ. Sci. Technol. 1999 , 33,  337.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[22]   Naftz D. L., Feltcorn E. M., Fuller C. C., Wilhelm R. G., Davis J. A., Morrison S. J., Freethey G. W., Piana M. J., et al., Field demonstration of permeable reactive barriers to remove dissolved uranium from groundwater, Fry Canyon, Utah, EPA 402-C-00-001 2000 (US Environmental Protection Agency: Washington, DC).

[23]   C. C. Fuller , J. R. Bargar , J. A. Davis , Molecular-scale characterization of uranium sorption by bone apatite materials for a permeable reactive barrier demonstration. Environ. Sci. Technol. 2003 , 37,  4642.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[24]   C. C. Fuller , J. R. Bargar , J. A. Davis , M. J. Piana , Mechanisms of uranium interactions with hydroxyapatite: Implication for groundwater remediation. Environ. Sci. Technol. 2002 , 36,  158.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[25]   Fuller C. C., Piana M. J., Bargar J. R., Davis J. A., Kohler M., in Handbook of groundwater remediation using permeable reactive barriers: Applications to radionuclides, trace metals, and nutrients (Eds D. L. Naftz, S. J. Morrison, J. A. Davis, C. C. Fuller) 2002 (Academic Press: San Diego, CA).

[26]   J. C. Seaman , J. S. Arey , P. M. Bertsch , Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition. J. Environ. Qual. 2001 , 30,  460.
        | PubMed |  open url image1

[27]   R. C. Moore , K. Holt , H. Zhao , A. Hasan , N. Awwad , M. Gasser , C. Sanchez , Sorption of Np(V) by synthetic hydroxyapatite. Radiochim. Acta 2003 , 91,  721.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   R. C. Moore , M. Gasser , N. Awwad , K. C. Holt , F. M. Salas , A. Hasan , M. A. Hasan , H. Zhao , et al. Sorption of plutonium (VI) by hydroxyapatite. J. Radioanal. Nucl. Chem. 2005 , 263,  97.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   Conca J., Strietelmeier E., Lu N., Ware S. D., Taylor T. P., Kaszuba J. P., Wright J., in Handbook of groundwater remediation using permeable reactive barriers 2002 (Academic Press: San Diego, CA).

[30]   H.-S. Park , I.-T. Kim , H.-Y. Kim , K.-S. Lee , S.-K. Ryu , J.-H. Kim , Application of apatite waste form for the treatment of water-soluble wastes containing radioactive elements. Part I. Investigation on the possibility. J. Ind. Eng. Chem. 2002 , 8,  318.
         open url image1

[31]   Q. Y. Ma , S. J. Traina , T. J. Logan , In situ Pb immobilization by apatite. Environ. Sci. Technol. 1993 , 27,  1803.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[32]   Q. Y. Ma , S. J. Traina , T. J. Logan , J. A. Ryan , Effects of aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environ. Sci. Technol. 1994 , 28,  1219.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[33]   M. V. Ruby , A. Davis , A. Nicholson , In-situ formation of lead phosphates in soils as a method to immobilize lead. Environ. Sci. Technol. 1994 , 28,  646.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   Y. Xu , F. W. Schwartz , Lead immobilization by hydroxyapatite in aqueous solution. J. Hydrol. 1994 , 15,  187.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   Stanforth R., Chowdhury A., In-situ stabilization of lead-contaminated soil, in Federal Environmental Restoration III and Waste Minimization II Conference Proceedings, New Orleans 1994 (Hazardous Materials Control Resources Institute: Rockville, MD).

[36]   A. Davis , M. V. Ruby , P. D. Bergstrom , Bioavailability of arsenic and lead in soils from the Butte, Montana, mining district. Environ. Sci. Technol. 1992 , 26,  461.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   E. Mavropoulos , A. M. Rossi , A. M. Costa , C. A. C. Perez , J. C. Moreira , M. Saldanha , Studies on the mechanisms of lead immobilization by hydroxyapatite. Environ. Sci. Technol. 2002 , 36,  1625.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[38]   J. M. McArthur , Francolite geochemistry – compositional controls on formation, diagenesis, metamorphism, and weathering. Geochim. Cosmochim. Acta 1985 , 49,  23.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[39]   Conca J. L., Lu N., Parker G., Moore B., Adams A., Wright J., Heller P., PIMS – remediation of metal contaminated waters and soils, in Proceedings of the Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds, 22–25 May, 2000, Monterey, CA 2000 (Battelle Press: Columbus, OH).

[40]   Lee S. Y., Francis C. W., Timpson M. E., Elless M. P., Radionuclide containment in soil by phosphate treatment, CONF-9503120-1 1995 (Oak Ridge National Laboratory: Oak Ridge, TN).

[41]   J. C. Seaman , J. Hutchinson , B. P. Jackson , V. M. Vulava , In situ treatment of metals in contaminated soils using phytate. J. Environ. Qual. 2003 , 32,  153.
        | PubMed |  open url image1

[42]   Wright J., Peurrung L. M., Moody T. E., Conca J. L., Chen X., Didzerekis P. P., Wyse E., In situ immobilization of heavy metals in apatite mineral formulations, Strategic Environmental Research and Development Program Progress Report 1995 (Pacific Northwest Laboratory: Richland, WA).

[43]   Wright J., Skinner H. C. W., Mattigod S. V., Serne R. J., Solid solution apatite mineral formation structure and crystal chemistry 1991 (Pacific Northwest Laboratory: Richland, WA).

[44]   Nash K., Jensen E. J., Schmidt M. A., in Science and technology for disposal of radioactive tank wastes (Eds W. W. Schultz, N. J. Lombardo) 1998, p. 507 (Plenum Press: New York).

[45]   Nash K., Jensen M. P., Schmidt M. A., Actinide immobilization in the subsurface environment by in-situ treatment with a hydrolytically unstable organophosphorous complexant: uranyl uptake by calcium phytate, in International Conference on Actinides, Baden-Baden, Germany, ANL/CHM/CP-92802; CONF-970907 1997 (Argonne National Laboratory: Argonne, IL).

[46]   Nash K., Jensen M. P., Schmidt M. A., In-situ mineralization of actinides for groundwater cleanup: laboratory demonstration with soil from the Fernald Environmental Management Project, in 214th National American Chemical Society Meetings, ANL/CHM/CP-93218; CONF-970962 1997 (Argonne National Laboratory: Argonne, IL).

[47]   K. Nash , M. P. Jensen , M. A. Schmidt , Actinide immobilization in the subsurface environment by in-situ treatment with a hydrolytically unstable organophosphorous complexant: Uranyl uptake by calcium phytate. J. Alloy. Comp. 1998 , 271,  257.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[48]   Nash K., Morse L. R., Jensen M. P., Appelman E. H., Schmidt M. A., Friedrich S., Redko M., Hines J. J., Water-soluble organophosphorous reagents for mineralization of heavy metals, ANL/CHM/CP-98479 1999 (Argonne National Laboratory: Argonne, IL).

[49]   D. M. Wellman , J. P. Icenhower , A. T. Owen , Comparative analysis of soluble phosphate amendments for the remediation of heavy metal contaminants: Effect on sediment hydraulic conductivity. Environ. Chem. 2006 , 3,  219.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[50]   Serne R. J., Brown C. F., Schaef H. T., Pierce E. M., Lindberg M. J., Wang Z., Gassman P. L., Catalano J. G., 300 Area uranium leach and adsorption project, PNNL-14022 2002 (Pacific Northwest National Laboratory: Richland, WA).

[51]   A. P. Gamerdinger , D. I. Kaplan , D. M. Wellman , R. J. Serne , Two-region flow and rate-limited sorption of uranium (VI) during transport in an unsaturated silt loam. Water Resour. Res. 2001 , 37,  3147.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[52]   A. P. Gamerdinger , D. I. Kaplan , D. M. Wellman , R. J. Serne , Two-region flow and decreased sorption of uranium (VI) during transport in Hanford groundwater and unsaturated sands. Water Resour. Res. 2001 , 37,  3155.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[53]   A. P. Gamerdinger , K. van Rees , P. S. C. Rao , R. E. Jessup , Evaluation of in situ columns for characterizing organic contaminant sorption during transport. Environ. Sci. Technol. 1994 , 28,  376.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[54]   D. M. Wellman , A. P. Gamerdinger , D. I. Kaplan , R. J. Serne , Effect of particle scale heterogeneity on uranium (VI) retardation during transport in unsaturated porous media. Vadose Zone J. in press.
         open url image1

[55]   McGrail B. P., Martin P. F. C., Lindenmeier C. W., Accelerated testing of waste forms using a novel pressurized unsaturated flow (PUF) method, in Materials Research Society Symposium Proceedings 1997 (Pacific Northwest National Laboratory: Richland, WA).

[56]   McGrail P. B., Icenhower J. P., Martin P. F., Rector D. R., Schaef H. T., Rodriguez E. A., Steele J. L., Low-activity waste glass studies: FY2000 summary report, PNNL-13381 2000 (Pacific Northwest National Laboratory: Richland, WA).

[57]   E. M. Pierce , B. P. McGrail , D. H. Bacon , An integrated approach to determining the mechanisms, rates, and long-term corrosion of borosilicate waste glasses: III. Pressurized unsaturated flow test and sub-surface over reactive multi-phases results. Appl. Geochem. in press.
         open url image1

[58]   Pierce E. M., McGrail B. P., Bagasen L. M., Rodriguez E. A., Wellman D. M., Geizler K. N., Baum S. R., Reed L. R., Crum J. V., Schaef H. T., Laboratory testing of bulk vitrified low-activity waste forms to support the 2005 integrated disposal facility performance assessment, PNNL-15126 2005 (Pacific Northwest National Laboratory: Richland, WA).

[59]   E. M. Pierce , B. P. McGrail , J. C. Marra , P. F. C. Martin , B. W. Arey , K. N. Geiszler , Accelerated weathering of a high-level and pu-bearing lanthanide borosilicate waste glass in a can-in-canister configuration. Appl. Geochem. 2007 , 22,  1841.
        | Crossref |  open url image1

[60]   Pierce E. M., McGrail B. P., Rodriguez E. A., Schaef H. T., Saripalli K. P., Serne R. J., Krupa K. M., Martin P. F., Baum S. R., Geiszler K. N., Reed L. R., Shaw W. J., Waste form release data package for the 2005 integrated disposal facility performance assessment, PNNL-14805 2004 (Pacific Northwest National Laboratory: Richland, WA).

[61]   E. M. Pierce , B. P. McGrail , M. M. Valenta , D. M. Strachan , The accelerated weathering of a radioactive low-activity waste glass under hydraulically unsaturated conditions: experimental results from a pressurized unsaturated flow (PUF) test. Nucl. Technol. 2006 , 155,  149.
         open url image1

[62]   R. A. Griffin , J. J. Jurinak , Kinetics of the phosphate interaction with calcite. Soil Sci. Soc. Am. J. 1974 , 38,  75.
         open url image1

[63]   T. G. Sabbides , P. G. Koutsoukos , The effect of surface treatment with inorganic orthophosphate on the dissolution of calcium carbonate. J. Cryst. Growth 1996 , 165,  268.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[64]   Serne R. J., Bjornstad B. N., Horton D. G., Lanigan D. C., Lindenmeier C. W., Lindberg M. J., Clayton R. E., LeGore V. L., et al., Characterization of vadose zone sediments below the TX tank farm: Boreholes C3830, C3831, C3832 and RCRA borehole 299-w10-27, PNNL-14849 2004 (Pacific Northwest National Laboratory: Richland, WA).

[65]   Serne R. J., Bjornstad B. N., Schaef H. T., Williams B. A., Lanigan D. C., Horton D. G., Clayton R. E., Mitroshkov A. V., LeGore V. L., O'Hara M. J., Brown C. F., Parker K. E., Kutnyakov I. V., Serne J. N., Last G. V., Smith S. C., Lindenmeier C. W., Zachara J. M., Burke D. B., Characterization of vadose zone sediment: Uncontaminated RCRA borehole core samples and composite samples, PNL-13757-1 2002 (Pacific Northwest National Laboratory: Richland, WA).

[66]   Serne R. J., LeGore V. L., Mattigod S. V., Leaching tendencies of uranium and regulated trace metals from the Hanford site 300 area north process pond sediment, PNL-10109 1994 (Pacific Northwest Laboratory: Richland, WA).

[67]   J. L. Brown , Calcium phosphate precipitation in aqueous calcite limestone suspensions. J. Environ. Qual. 1980 , 9,  641.
         open url image1

[68]   J. L. Brown , Calcium phosphate precipitation: Effect of common and foreign ions on hydroxyapatite crystal growth. Soil Sci. Soc. Am. J. 1981 , 45,  482.
         open url image1

[69]   J. L. Brown , Calcium phosphate precipitation: Identification of kinetic parameters in aqueous limestone suspensions. Soil Sci. Soc. Am. J. 1981 , 45,  475.
         open url image1

[70]   J. F. Lutz , R. A. Pinto , R. Garcia-Lagos , H. G. Hilton , Effect of phosphorus on some physical properties of soils: II. Water retention. Soil Sci. Soc. Am. J. 1966 , 30,  433.
         open url image1

[71]   E. M. Pierce , T. Jackson , M. Valenta , D. M. Wellman , J. G. Catalano , Phosphate barriers: Immobilization of uranium contamination under vadose zone conditions. Environ. Pollut. in press.
         open url image1

[72]   Zachara J. M., Davis J., Liu C., McKinley J., Qafoku N., Wellman D. M., Yabusaki S., Uranium geochemistry in the vadose zone and aquifer sediments from the 300 area uranium plume, PNNL-15121 2005 (Pacific Northwest National Laboratory: Richland, WA).

[73]   Wellman D. M., Fruchter J. S., Vermuel V. R., Experimental plan: Uranium stabilization through polyphosphate injection – 300 area uranium plume treatability demonstration project, PNNL-16101 2006 (Pacific Northwest National Laboratory: Richland, WA).

[74]   Wellman D. M., Pierce E. M., Richards E. L., Butler B. C., Parker K. E., Glovack J. N., Burton S. D., Baum S. R., Clayton E. T., Rodriguez E. A., Interim report: Uranium stabilization through polyphosphate injection – 300 area uranium plume treatability demonstration project, PNNL-16683 2007 (Pacific Northwest National Laboratory: Richland, WA).

[75]   Vermuel V. R., Fruchter J. S., Wellman D. M., Williams B. A., Williams M. D., Site characterization plan: Uranium stabilization through polyphosphate injection – 300 area uranium plume treatability demonstration project, PNNL-16008 2006 (Pacific Northwest National Laboratory: Richland, WA).

[76]   Williams B. A., Brown C. F., Um W., Nimmons M. J., Peterson R. E., Bjornstad B. N., Serne R. J., Spane F. A., et al., Limited field investigation report for uranium contamination in the 300 area, 300-FF-5 operable unit, Hanford site, Washington, PNNL-16435 2007 (Pacific Northwest National Laboratory: Richland, WA).

[77]   D. M. Wellman , E. M. Pierce , E. L. Richards , K. E. Parker , J. S. Fruchter , V. R. Vermeul , Uranium plume treatability demonstration at the Hanford site 300 area: Development of polyphosphate remediation technology for in-situ stabilization of uranium. Waste Manag. in press.
         open url image1

[78]   Wellman D. M., Pierce E. M., Richards E. L., Vermeul V. R., Fruchter J. S., Butler B. C., Burton S. D., Williams M. D., et al., in Waste management: Research, development and policy, (Ed. F. Columbus) in press (Nova Science Publishers, Inc.: Hauppauge, NY).