Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Latent disciplinal clashes concerning the batch dissolution of minerals, and their wider implications

Victor W. Truesdale A C and Jim Greenwood B
+ Author Affiliations
- Author Affiliations

A CSIRO National Geosequestration Laboratory, Australian Resource Research Centre, Kensington, WA 6152, Australia.

B CSIRO Oceans and Atmosphere, Indian Ocean Marine Research Centre, Crawley, WA 6009, Australia.

C Corresponding author. Email: victruesdale@gmail.com

Environmental Chemistry 15(2) 113-120 https://doi.org/10.1071/EN17199
Submitted: 8 November 2017  Accepted: 13 March 2018   Published: 11 May 2018

Environmental context. Mineral dissolution kinetics are important to understand natural processes including those increasingly used to store waste carbon dioxide and highly radio-active nuclides, and those involved in the amelioration of climate change and sea-level rise. We highlight a mistake made in the fundamental science that has retarded progress in the field for over 40 years. Its removal suggests improved ways to approach dissolution studies.

Abstract. Mineral dissolution kinetics are fundamental to biogeochemistry, and to the application of science to reduce the deleterious effects of humanity’s waste products, e.g. CO2 and radio-nuclides. However, a mistake made in the selection of the rate equation appropriate for use at the macro-scale of the aquatic environment has stymied growth in major aspects of the subject for some 40 years. This paper identifies the mistake, shows how it represents a latent disciplinal clash between two rate equations, and explores the misunderstandings that resulted from it. The paper also briefly explores other disciplinal clashes. Using the example of calcite dissolution, the paper also shows how the phenomenon of ‘non-ideal’ dissolution, which is prevalent in alumino-silicate mineral dissolution, as well as with calcite, has obscured the clash. The paper provides new information on plausible mechanisms, the absence of which has contributed to the problem. Finally, it argues that disciplinal clashes need to be minimised so that a rigorous description of dissolution at the large scale can be matched to findings at the atomic, or near-atomic, scale.


References

[1]  R. Wollast, Kinetics of the alteration of K-feldspar in buffered solutions at room temperature Geochim. Cosmochim. Acta 1967, 31, 635.
Kinetics of the alteration of K-feldspar in buffered solutions at room temperatureCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXkt1equr0%3D&md5=ae4708a6ba780eccc95e195087bd9934CAS |

[2]  W. Dreybrodt, Kinetics of the dissolution of calcite and its applications to karstification Chem. Geol. 1981, 31, 245.
Kinetics of the dissolution of calcite and its applications to karstificationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXht1CqtLo%3D&md5=735b6a232667fb8efe69e2a42d584cd4CAS |

[3]  J. Christoffersen, M. Christoffersen, The kinetics of dissolution of calcium sulphate dihydrate in water J. Cryst. Growth 1976, 35, 79.
The kinetics of dissolution of calcium sulphate dihydrate in waterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XlsV2lu7w%3D&md5=ab094605da27fbc953bd621a8ada9cc2CAS |

[4]  M. A. Raines, T. A. Dewers, Mixed transport/reaction control of gypsum dissolution kinetics in aqueous solutions and initiation of gypsum karst Chem. Geol. 1997, 140, 29.
Mixed transport/reaction control of gypsum dissolution kinetics in aqueous solutions and initiation of gypsum karstCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkslSltbs%3D&md5=bf00f3e94b4b3877d7ecafa25620f3e2CAS |

[5]  J. W. Morse, Dissolution of calcium carbonate in seawater. VI. The near-equilibrium kinetics of dissolution of calcium carbonate-rich sediments Am. J. Sci. 1978, 278, 344.
Dissolution of calcium carbonate in seawater. VI. The near-equilibrium kinetics of dissolution of calcium carbonate-rich sedimentsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhsVWgtb8%3D&md5=1fd587a34edc0d70d302c4dc310638aaCAS |

[6]  L. M. Walter, J. W. Morse, The dissolution kinetics of shallow marine carbonates in seawater: a laboratory study Geochim. Cosmochim. Acta 1985, 49, 1503.
The dissolution kinetics of shallow marine carbonates in seawater: a laboratory studyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltVOktbc%3D&md5=c39fc397337c21665438d0af297ccb63CAS |

[7]  R. S. Keir, The dissolution kinetics of biogenic calcium carbonate in seawater Geochim. Cosmochim. Acta 1980, 44, 241.
The dissolution kinetics of biogenic calcium carbonate in seawaterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXit1Wlt70%3D&md5=8438b9cbe0a4a63fa41ac71725ebe41dCAS |

[8]  See pp. 359–391 in: J. L. Sarmiento, N. Gruber, Ocean Biogeochemical Dynamics 2006 (Princeton University Press: Princeton, NJ).

[9]  J. P. Icenhower, B. P. McGrail, W. J. Shaw, E. M. Pierce, P. Nachimuthu, D. K. Shuh, E. A. Rodriquez, J. L. Steele, Experimentally determined dissolution kinetics of Na-rich borosilicate glass at far from equilibrium conditions: implications for transition state theory Geochim. Cosmochim. Acta 2008, 72, 2767.
Experimentally determined dissolution kinetics of Na-rich borosilicate glass at far from equilibrium conditions: implications for transition state theoryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVekt7s%3D&md5=8f56f53cfa0e5a25b81d685062903521CAS |

[10]  S. Gin, C. Jégou, P. Frugier, Y. Minet, Theoretical consideration on the application of the Aagaard-Helgeson rate law to the dissolution of silicate minerals and glasses Chem. Geol. 2008, 255, 14.
Theoretical consideration on the application of the Aagaard-Helgeson rate law to the dissolution of silicate minerals and glassesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOqs7rE&md5=0235fcb381401793b167ae13edd17fddCAS |

[11]  J. P. Icenhower, Empirical kinetics and their role in elucidating the utility of transition-state theory to mineral-water reactions. A comment upon, “Evidence and Potential Implications of Exponential Tails to Concentration Versus Time Plots for the Batch Dissolution of Calcite” by V. W. Truesdale Aquat. Geochem. 2015, 21, 397.
Empirical kinetics and their role in elucidating the utility of transition-state theory to mineral-water reactions. A comment upon, “Evidence and Potential Implications of Exponential Tails to Concentration Versus Time Plots for the Batch Dissolution of Calcite” by V. W. TruesdaleCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFSltL7N&md5=75b83334a9ef11a49b36fd3b687cf1c0CAS |

[12]  C. Noiriel, L. Luquot, B. Madé, L. Raimbault, P. Gouze, J. van der Lee, Changes in reactive surface area during limestone dissolution: An experimental and modeling study Chem. Geol. 2009, 265, 160.
Changes in reactive surface area during limestone dissolution: An experimental and modeling studyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVynsrk%3D&md5=5ba5b548874139308245295423567a58CAS |

[13]  J. F. Bunnett, Part 1, in Techniques of Chemistry, vol. 6 (Ed. E. S. Lewis) 1974, pp. 129–209 (Wiley-Interscience: New York, NY).

[14]  J. F. Bunnett, Part 2, in Techniques of Chemistry, vol. 6 (Ed. E. S. Lewis) 1974, pp. 367–488 (Wiley-Interscience, New York, NY).

[15]  V. W. Truesdale, Evidence and potential implications of exponential tails to concentration versus time plots for the batch-dissolution of calcite Aquat. Geochem. 2015, 21, 367.

[16]  H. Jansen, R. E. Zeebe, D. A. Wolf-Gladrow, Modeling the dissolution of settling CaCO3 in the ocean Global Biogeochem. Cycles 2002, 16, 11-1.
Modeling the dissolution of settling CaCO3 in the oceanCrossref | GoogleScholarGoogle Scholar |

[17]  J. Greenwood, Shallow water dissolution of settling calcite at station ALOHA Limnol. Oceanogr. 2009, 54, 1420.
Shallow water dissolution of settling calcite at station ALOHACrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCrt73K&md5=7846b8fa07e78b6e7a2d410290bbdf0eCAS |

[18]  K. Maher, C. I. Steefel, A. F. White, D. A. Stonestrom, The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California Geochim. Cosmochim. Acta 2009, 73, 2804.
The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, CaliforniaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltValsL8%3D&md5=897236652fae12968e1b0d9c732fa8d1CAS |

[19]  I. N. MacInnis, S. L. Brantley, The role of dislocations and surface morphology in calcite dissolution Geochim. Cosmochim. Acta 1992, 56, 1113.
The role of dislocations and surface morphology in calcite dissolutionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitFyhsL0%3D&md5=68252cd8011c4edab5db01fd791c379bCAS |

[20]  G. Jordan, W. Rammensee, Dissolution rates of calcite (1014) obtained by scanning force microscopy: Microtopography-based dissolution kinetics on surfaces with anisotropic step velocities Geochim. Cosmochim. Acta 1998, 62, 941.
Dissolution rates of calcite (1014) obtained by scanning force microscopy: Microtopography-based dissolution kinetics on surfaces with anisotropic step velocitiesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1ektLc%3D&md5=9d818645633b84539e838e987c838f34CAS |

[21]  R. Shiraki, P. A. Rock, W. H. Casey, Dissolution kinetics of calcite in 0.1 M NaCl at room temperature: an atomic force Microscopic (AFM) study Aquat. Geochem. 2000, 6, 87.
Dissolution kinetics of calcite in 0.1 M NaCl at room temperature: an atomic force Microscopic (AFM) studyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis1Cgtrw%3D&md5=bbab97b28da31999e6e721c45391463fCAS |

[22]  A. Lüttge, U. Winkler, A. C. Lasaga, Interferometric study of dolomite dissolution: A new conceptual model for mineral dissolution Geochim. Cosmochim. Acta 2003, 67, 1099.
Interferometric study of dolomite dissolution: A new conceptual model for mineral dissolutionCrossref | GoogleScholarGoogle Scholar |

[23]  G. W. Luther, Editorial Aquat. Geochem. 2015, 21, 363.
EditorialCrossref | GoogleScholarGoogle Scholar |

[24]  D. R. Turner, The role of solution chemistry in calcite dissolution. Discussion paper to “Evidence and potential implications of exponential tails to concentration versus time plots for the batch dissolution of calcite” by V. Truesdale Aquat. Geochem. 2015, 21, 407.
The role of solution chemistry in calcite dissolution. Discussion paper to “Evidence and potential implications of exponential tails to concentration versus time plots for the batch dissolution of calcite” by V. TruesdaleCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFSltL7M&md5=19ec750cf108d5c17f7f123ff22d2327CAS |

[25]  R. S. Arvidson, C. Fischer, A. Luttge, Calcite dissolution kinetics: A response to “Evidence and potential implications of exponential tails to concentration versus time plots for the batch dissolution of calcite” (Victor W. Truesdale) Aquat. Geochem. 2015, 21, 415.
Calcite dissolution kinetics: A response to “Evidence and potential implications of exponential tails to concentration versus time plots for the batch dissolution of calcite” (Victor W. Truesdale)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFSlt7fE&md5=5f1a2be1446604a5756fe66626f59c3dCAS |

[26]  V. W. Truesdale, Response to Comments upon, ‘‘Evidence and potential implications of exponential tails to concentration versus time plots for the batch dissolution of calcite Aquat. Geochem. 2015, 21, 423.
Response to Comments upon, ‘‘Evidence and potential implications of exponential tails to concentration versus time plots for the batch dissolution of calciteCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFSltL7P&md5=33f066a68cf5cc8d181bbdd6fdb00871CAS |

[27]  S. L. Brantley, C. F. Conrad, Analysis of rates of geo-chemical reactions, in Kinetics of Water-Rock Interaction (Eds. S. L. Brantley, J. D. Kubicki, A. F. White) 2008, pp. 1–37 (Springer: New York, NY).

[28]  A. C. Lasaga, A. Luttge, Mineralogical approaches to fundamental crystal dissolution kinetics Am. Mineral. 2004, 89, 527.
Mineralogical approaches to fundamental crystal dissolution kineticsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFCrt7c%3D&md5=a92534d73b5e1bffc6c81f9fc276a9ffCAS |

[29]  V. W. Truesdale, J. E. Greenwood, Improved templating of the net rate of mineral batch dissolutions Geochim. Cosmochim. Acta 2015, 164, 428.
Improved templating of the net rate of mineral batch dissolutionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotlantLo%3D&md5=a9698f71b824e0c95fb32043f7122c16CAS |

[30]  J. Colombani, The Alkaline Dissolution Rate of Calcite J. Phys. Chem. Lett. 2016, 7, 2376.
The Alkaline Dissolution Rate of CalciteCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpsFGqs70%3D&md5=a6b40406c5bdf112e114c3246f60d631CAS |

[31]  R. S. Arvidson, I. E. Ertan, J. E. Amonette, A. Luttge, Variation in calcite dissolution rates: A fundamental problem Geochim. Cosmochim. Acta 2003, 67, 1623.
Variation in calcite dissolution rates: A fundamental problemCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVehtb0%3D&md5=19226cacfbe7a0bcae42e442e0629fa7CAS |

[32]  A. Lüttge, R. S. Arvidson, C. Fischer, A stochastic treatment of crystal dissolution kinetics Elements 2013, 9, 183.
A stochastic treatment of crystal dissolution kineticsCrossref | GoogleScholarGoogle Scholar |

[33]  C. Fischer, A. Lüttge, Beyond the conventional understanding of water-rock reactivity Earth Planet. Sci. Lett. 2017, 457, 100.
Beyond the conventional understanding of water-rock reactivityCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslCgtb3M&md5=aebc7afddb9b15517c45c6eb7751c93dCAS |

[34]  G. H. Nancollas, M. M. Reddy, The crystallisation of calcium carbonate in seawater: II. Calcite growth mechanism J. Colloid Interface Sci. 1971, 37, 824.
The crystallisation of calcium carbonate in seawater: II. Calcite growth mechanismCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XjvVaksw%3D%3D&md5=4f4f9d442c14afe567d44064f2e57cc5CAS |

[35]  E. L. Sjöberg, A fundamental equation for calcite dissolution kinetics Geochim. Cosmochim. Acta 1976, 40, 441.
A fundamental equation for calcite dissolution kineticsCrossref | GoogleScholarGoogle Scholar |

[36]  D. Rickard, E. L. Sjöberg, Mixed kinetic control of calcite dissolution rates Am. J. Sci. 1983, 283, 815.
Mixed kinetic control of calcite dissolution ratesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlsl2iu7g%3D&md5=5946a164543f7879088e2008c968f0c2CAS |

[37]  R. Petrovich, Kinetics of dissolution of mechanically comminuted rock-forming oxides and silicates –II. Deformation and dissolution of oxides and silicates in the laboratory and at the Earth’s surface Geochim. Cosmochim. Acta 1981, 45, 1675.
Kinetics of dissolution of mechanically comminuted rock-forming oxides and silicates –II. Deformation and dissolution of oxides and silicates in the laboratory and at the Earth’s surfaceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtVOhu7k%3D&md5=a7e0afc8e975b1eb2d40d67df7babcadCAS |

[38]  P. Aagaard, H. C. Helgeson, Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. I. Theoretical considerations Am. J. Sci. 1982, 282, 237.
Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. I. Theoretical considerationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XksFyksbg%3D&md5=1c263c8a948f210f91306cde224fd863CAS |

[39]  T. E. Burch, K. L. Nagy, A. C. Lasaga, Free energy dependence of albite dissolution kinetics at 80 °C and pH 8.8 Chem. Geol. 1993, 105, 137.
Free energy dependence of albite dissolution kinetics at 80 °C and pH 8.8Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitlOrsrs%3D&md5=c6eaf0212c5b537875b9bccdb9a3cdd3CAS |

[40]  A. C. Lasaga, A. Luttge, A model for crystal dissolution Eur. J. Mineral. 2003, 15, 603.
A model for crystal dissolutionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtlOrtb4%3D&md5=9517c568b7a862172198b09925998bf5CAS |

[41]  J. W. Morse, R. S. Arvidson, The dissolution kinetics of major sedimentary carbonate minerals Earth Sci. Rev. 2002, 58, 51.
The dissolution kinetics of major sedimentary carbonate mineralsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlKju7w%3D&md5=0432bd20ad4db5a9f94a0923de989f8cCAS |

[42]  V. W. Truesdale, Batch dissolution kinetics: The shrinking sphere model with salts and its potential application to biogenic silica Aquat. Geochem. 2007, 13, 267.
Batch dissolution kinetics: The shrinking sphere model with salts and its potential application to biogenic silicaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKht7jI&md5=03001a47b8b7157806aa3a916910a186CAS |

[43]  V. W. Truesdale, Shrinking sphere kinetics for batch dissolution of mixed particles of a single substance at high under-saturation – validation with sodium chloride, but with biogenic silica in mind Aquat. Geochem. 2008, 14, 359.
Shrinking sphere kinetics for batch dissolution of mixed particles of a single substance at high under-saturation – validation with sodium chloride, but with biogenic silica in mindCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12gtL%2FE&md5=cc49dc42addf15c6480107e06fb52ad3CAS |

[44]  V. W. Truesdale, Sucrose dissolution studies leading to a generic Shrinking Object model for batch dissolution of regular-shaped particles Aquat. Geochem. 2009, 15, 421.
Sucrose dissolution studies leading to a generic Shrinking Object model for batch dissolution of regular-shaped particlesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsl2isbk%3D&md5=1af8088d6210d5987a8122a3d86894b6CAS |

[45]  V. W. Truesdale, Silica gel as a surrogate for biogenic silica in batch dissolution experiments at pH 9.2: Further testing of the Shrinking Object Model and a novel approach to the dissolution of a population of particles Aquat. Geochem. 2010, 16, 101.
Silica gel as a surrogate for biogenic silica in batch dissolution experiments at pH 9.2: Further testing of the Shrinking Object Model and a novel approach to the dissolution of a population of particlesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyjt7rJ&md5=e3495b327da4f34399e75d4743393166CAS |

[46]  V. W. Truesdale, Generic issues of batch dissolution exemplified by gypsum rock Aquat. Geochem. 2011, 17, 21.
Generic issues of batch dissolution exemplified by gypsum rockCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOktrzK&md5=05953da2869f1f6ed3aa106afd3099bbCAS |

[47]  V. W. Truesdale, Rate equations and an ion-pair mechanism for batch dissolution of gypsum: Repositioning the Shrinking Object Model at the core of Hydrodynamics Aquat. Geochem. 2011, 17, 141.
Rate equations and an ion-pair mechanism for batch dissolution of gypsum: Repositioning the Shrinking Object Model at the core of HydrodynamicsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlegs7k%3D&md5=020afb40ba06c056ea442c79b0acf968CAS |

[48]  V. W. Truesdale, Tidying up the environment: A journey from exponential curves to hydrodynamics in environmental batch dissolutions Pure Appl. Chem. 2011, 83, 1113.
Tidying up the environment: A journey from exponential curves to hydrodynamics in environmental batch dissolutionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFWqur0%3D&md5=e493816d941de6c4d3627b9a28dd2ee5CAS |

[49]  V. W. Truesdale, Unifying batch-dissolution kinetics for salts: probing the back reaction for gypsum and calcite by means of the common ion effect Aquat. Geochem. 2012, 18, 217.
Unifying batch-dissolution kinetics for salts: probing the back reaction for gypsum and calcite by means of the common ion effectCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1ymurs%3D&md5=72203b62070ca28c0f1f3a8070034273CAS |

[50]  J. Xu, C. Fan, H. H. Teng, Calcite dissolution kinetics in view of Gibbs free energy, dislocation density, and pCO2 Chem. Geol. 2012, 322, 11.
Calcite dissolution kinetics in view of Gibbs free energy, dislocation density, and pCO2Crossref | GoogleScholarGoogle Scholar |

[51]  M. S. Beig, A. Lüttge, Albite dissolution kinetics as a function of distance from equilibrium: implications for natural feldspar weathering Geochim. Cosmochim. Acta 2006, 70, 1402.
Albite dissolution kinetics as a function of distance from equilibrium: implications for natural feldspar weatheringCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1aiurY%3D&md5=f8dbc95a796b6066aef955c3950f3c54CAS |

[52]  O. W. Duckworth, S. T. Martin, Dissolution rates and pit morphologies of rhombohedral carbonate minerals Am. Mineral. 2004, 89, 554.
Dissolution rates and pit morphologies of rhombohedral carbonate mineralsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFCrtLw%3D&md5=c80525113a8d111b0506d6847bd09ae4CAS |

[53]  P. M. Dove, N. Han, J. J. de Yoreo, Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior Proc. Natl. Acad. Sci. USA 2005, 102, 15357.
Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behaviorCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Shtr3F&md5=a630c902c70a20c82ed1811c55471e22CAS |

[54]  R. S. Arvidson, A. Luttge, Mineral dissolution kinetics as a function of distance from equilibrium – new experimental results Chem. Geol. 2010, 269, 79.
Mineral dissolution kinetics as a function of distance from equilibrium – new experimental resultsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1OjsLs%3D&md5=6d9fa9132267769d7c75af1f74fbce24CAS |

[55]  A. Lüttge, Crystal dissolution kinetics and Gibbs free energy J. Electron Spectrosc. Relat. Phenom. 2006, 150, 248.
Crystal dissolution kinetics and Gibbs free energyCrossref | GoogleScholarGoogle Scholar |

[56]  O. Erga, S. G. Terjesen, Kinetics of the heterogeneous reaction of calcium bicarbonate of formation with special reference to copper ion inhibition Acta Chem. Scand. 1956, 10, 872.
Kinetics of the heterogeneous reaction of calcium bicarbonate of formation with special reference to copper ion inhibitionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXhtVWqu7k%3D&md5=c3a93a3d4b5bbaccad692472dfae93b2CAS |

[57]  S. G. Terjesen, O. Erga, G. Thorsen, A. Ve, Phase boundary processes as rate determining steps in reactions between solids and liquids. II. The inhibitory action of metal ions on the formation of calcium bicarbonate by the reaction of calcite with aqueous carbon dioxide Chem. Eng. Sci. 1961, 14, 277.
Phase boundary processes as rate determining steps in reactions between solids and liquids. II. The inhibitory action of metal ions on the formation of calcium bicarbonate by the reaction of calcite with aqueous carbon dioxideCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXhtVeguro%3D&md5=7ca02c9bfdf4c86ee07e2ad21bcf5d83CAS |

[58]  I. Nestaas, S. G. Terjesen, The inhibitory effects of scandium ions upon the dissolution of calcium carbonate Acta Chem. Scand. 1969, 23, 2519.
The inhibitory effects of scandium ions upon the dissolution of calcium carbonateCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXisFKlsA%3D%3D&md5=3ab3f04e75c4d25bf9fc0b97e3724147CAS |

[59]  U. Svensson, W. Dreybrodt, Dissolution kinetics of natural calcite minerals in CO2-water systems approaching calcite equilibrium Chem. Geol. 1992, 100, 129.
Dissolution kinetics of natural calcite minerals in CO2-water systems approaching calcite equilibriumCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXpsVGk&md5=f08b6c97bf4e62dd1506ab2dad7b3a2dCAS |

[60]  L. Eisenlohr, K. Meteva, F. Gabrovšek, W. Dreybrodt, The inhibiting action of intrinsic impurities in natural calcium carbonate minerals to their dissolution kinetics in aqueous H2O-CO2 solutions Geochim. Cosmochim. Acta 1999, 63, 989.
The inhibiting action of intrinsic impurities in natural calcium carbonate minerals to their dissolution kinetics in aqueous H2O-CO2 solutionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXks12nt7Y%3D&md5=79f8d7b14b088f80c3aaa7b2f35db848CAS |

[61]  M. D. Vinson, R. S. Arvidson, A. Lüttge, Kinetic inhibition of calcite (1 0 4) dissolution by aqueous manganese(II) J. Cryst. Growth 2007, 307, 116.
Kinetic inhibition of calcite (1 0 4) dissolution by aqueous manganese(II)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFarsL4%3D&md5=7ee2640bb6b4e27dcaaba3420a986f0aCAS |

[62]  L. L. Bircumshaw, A. C. Riddiford, Transport control in heterogeneous reactions Quart. Rev. Chem. Soc. 1952, 6, 157.
Transport control in heterogeneous reactionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XltFSktw%3D%3D&md5=38302db89ac18775cffa9c759b32e5d6CAS |

[63]  P. Atkins, J. de Paula, Physical Chemistry 2002 (Oxford University Press: Oxford).

[64]  P. Sykes, Mechanism in Organic Chemistry 6th Edition 1960 (John Wiley & Sons: New York, NY).

[65]  O. S. Pokrovsky, J. Schott, Experimental study of brucite dissolution and precipitation in aqueous solution: surface speciation and chemical affinity control Geochim. Cosmochim. Acta 2004, 68, 31.
Experimental study of brucite dissolution and precipitation in aqueous solution: surface speciation and chemical affinity controlCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpslCgtLY%3D&md5=e70275034b9c3f4cbaf35577a37a6eb9CAS |

[66]  J. Schott, O. S. Pokrovsky, E. H. Oelkers, The link between mineral dissolution/precipitation kinetics and solution chemistry Rev. Mineral. Geochem. 2009, 70, 207.
The link between mineral dissolution/precipitation kinetics and solution chemistryCrossref | GoogleScholarGoogle Scholar |

[67]  M. De La Pierre, P. Raiteri, A. G. Stack, J. D. Gale, Uncovering the atomistic mechanism for calcite step growth Angew. Chem. Int. Ed. 2017, 56, 8464.
Uncovering the atomistic mechanism for calcite step growthCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXmtVyhurY%3D&md5=c11130169119bfcebd397e2ca89d0125CAS |

[68]  V. W. Truesdale, C. Sebu, A New Analytic Integration of the Rate Equation for Batch Dissolution of Salts in the Presence of Common Ion Aquat. Geochem. 2013, 19, 39.
A New Analytic Integration of the Rate Equation for Batch Dissolution of Salts in the Presence of Common IonCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslGkt77M&md5=a48100db9d391f0bc8e7e9edd7372c61CAS |

[69]  B. Hales, S. Emerson, Evidence in support of first-order dissolution kinetics of calcite in seawater Earth Planet. Sci. Lett. 1997, 148, 317.
Evidence in support of first-order dissolution kinetics of calcite in seawaterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivV2mtL8%3D&md5=92757a69df93f1151a633dfe491b7c41CAS |

[70]  C.-y. Xu, Hydrologic Models 2002 (Uppsala University of Earth Sciences: Uppsala, Sweden).

[71]  L. P. de Oliveira, D. Hudebine, D. Guillaume, J. J. Verstraete, A review of kinetic modeling Methodologies for complex processes Oil and Gas Technology 2016, 71, 45.
A review of kinetic modeling Methodologies for complex processesCrossref | GoogleScholarGoogle Scholar |

[72]  J. Colombani, Measurement of the pure dissolution rate constant of a mineral in water Geochim. Cosmochim. Acta 2008, 72, 5634.
Measurement of the pure dissolution rate constant of a mineral in waterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCksrjO&md5=61e258a6be941ab3ebb0ac7248b5c6e1CAS |

[73]  I. Kurganskaya, A. Lüttge, Kinetic Monte Carlo approach to study carbonate dissolution J. Phys. Chem. C 2016, 120, 6482.
Kinetic Monte Carlo approach to study carbonate dissolutionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xjtlemuro%3D&md5=9b8ab67294a3b26bd13cff5530dd0964CAS |

[74]  A. G. Stack, P. R. Raiteri, J. D. Gale, Accurate rates of the complex mechanisms for growth and dissolution of minerals using a combination of rare-event theories J. Am. Chem. Soc. 2012, 134, 11.
Accurate rates of the complex mechanisms for growth and dissolution of minerals using a combination of rare-event theoriesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVSlurg%3D&md5=d8900ada1322a13b1cb37de2e70c9143CAS |

[75]  P. R. Raiteri, R. Demichelis, J. D. Gale, Thermodynamically consistent force field for molecular dynamics simulations of alkaline-earth carbonates and their aqueous speciation J. Phys. Chem. C 2015, 119, 24447.
Thermodynamically consistent force field for molecular dynamics simulations of alkaline-earth carbonates and their aqueous speciationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1Wqs7nL&md5=eb61f9735bc7052b26b076672acd259bCAS |

[76]  A. Putnis, Mineral replacement reactions Rev. Mineral. Geochem. 2009, 70, 87.
Mineral replacement reactionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFGku7s%3D&md5=838e7f4eeecdde1058398857d636e75eCAS |