Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Degradation of pentachlorophenol as a model hazardous and recalcitrant organochlorinated pollutant using AgIII

Ileana R. Zamora-Garcia A , Alejandro Alatorre-Ordaz A , Jorge G. Ibanez B C , Julio Cesar Torres-Elguera A , Kazimierz Wrobel A and Silvia Gutierrez-Granados A
+ Author Affiliations
- Author Affiliations

A Departamento de Quimica Analitica, Unidad Pueblito de Rocha, Campus Guanajuato, Universidad de Guanajuato, Cerro de la Venada s/n, Col. Pueblito de Rocha, CP 36040 Guanajuato, Mexico.

B Depto. de Ing. y Ciencias Quimicas, Centro Mexicano de Quimica Verde y Microescala, Universidad Iberoamericana, Prol. Reforma 880, 01219 Ciudad de Mexico, Mexico.

C Corresponding author. Email: jorge.ibanez@ibero.mx

Environmental Chemistry 14(8) 476-485 https://doi.org/10.1071/EN17114
Submitted: 24 February 2017  Accepted: 26 October 2017   Published: 21 March 2018

Environmental context. Electrochemistry offers potential applications for environmental remediation. Pentachlorophenol, a highly toxic and recalcitrant halogenated compound, is degraded by a novel oxidant produced electrochemically, and the intermediates and products of the degradation are investigated. Cyclic remediation systems merit further study.

Abstract. The use of electrochemically generated Ag(OH)4 as a strong oxidising agent was evaluated for the treatment of a model hazardous and recalcitrant organochlorinated pollutant, pentachlorophenol (PCP). High-performance liquid chromatography (HPLC), gas chromatography with flame ionisation detection (GC-FID) or with electron capture detection (GC-ECD), gas chromatography with mass spectrometry detection and UV-visible spectroscopy were utilised to investigate intermediates and products generated during such treatment. From these, it was deduced that dechlorination occurred first, followed by an oxidative ring opening at the C=C bond that destabilised the remaining structure and generated tetrachloro-p-benzoquinone, 2,3,5,6-tetrachlorophenol, 2,3,4,6-tetrachlorophenol, 2,4,6-trichlorophenol (or 2,3,5-trichlorophenol), 2,4,5-trichlorophenol (or 2,3,6-trichlorophenol) and 2,4-dichlorophenol (or 3,4-dichlorophenol). In contrast to other remediation methods (e.g. incineration) no highly toxic molecules such as dioxins were generated by this novel degradation system.

Additional keywords: analytical chemistry, persistent organic pollutants (POPs).


References

[1]  M. Pera-Titus, V. García-Molina, M. A. Baños, J. Giménez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: A general review Appl. Catal. B 2004, 47, 219.
Degradation of chlorophenols by means of advanced oxidation processes: A general reviewCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKlu7g%3D&md5=5a91f3d5c16f146a43e36dd3e489ae89CAS |

[2]  M. Czaplicka, B. Kaczmarczyk, Infrared study of chlorophenols and products of their photodegradation Talanta 2006, 70, 940.
Infrared study of chlorophenols and products of their photodegradationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyqurrK&md5=0d69df93901ce5ab22966ee98b79820cCAS |

[3]  D. W. Connell, Basic Concepts of Environmental Chemistry, 2nd edn 2005 (CRC-Taylor and Francis: Boca Raton, FL).

[4]  K. Govindan, M. Raja, M. Noel, E. J. James, Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide J. Hazard. Mater. 2014, 272, 42.
Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxideCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVKnu7w%3D&md5=de8ce218a0288ce1b5ef1c9619ec4f70CAS |

[5]  H. Wei, X. Yan, S. He, C. Sun, Catalytic wet air oxidation of pentachlorophenol over Ru/ZrO2 and Ru/ZrSiO2 catalysts Catal. Today 2013, 201, 49.
Catalytic wet air oxidation of pentachlorophenol over Ru/ZrO2 and Ru/ZrSiO2 catalystsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGisbvP&md5=34c9d7932f614395da7c803d156a4fd4CAS |

[6]  J. Folch, M. Yeste, D. Alvira, A. V. de la Torre, M. Bordas, M. López, Evaluation of pathways involved in pentachlorophenol-induced apoptosis in rat neurons Neurotoxicology 2009, 30, 451.
Evaluation of pathways involved in pentachlorophenol-induced apoptosis in rat neuronsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFCjt7s%3D&md5=3f56d53c918437e7178fce8b6b54a740CAS |

[7]  J. Niu, Y. Bao, Y. Li, Z. Chai, Electrochemical mineralization of pentachlorophenol (PCP) by Ti/SnO2-Sb electrodes Chemosphere 2013, 92, 1571.
Electrochemical mineralization of pentachlorophenol (PCP) by Ti/SnO2-Sb electrodesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1OjtLs%3D&md5=b9be77015f0db6ac00ecd537c11fc5c9CAS |

[8]  F. J. Benitez, J. L. Acero, F. J. Real, J. García, Kinetics of photodegradation and ozonation of pentachlorophenol Chemosphere 2003, 51, 651.
Kinetics of photodegradation and ozonation of pentachlorophenolCrossref | GoogleScholarGoogle Scholar |

[9]  C. Tai, G. Jiang, Dechlorination and destruction of 2,4,6-trichlorophenol and pentachlorophenol using hydrogen peroxide as the oxidant catalyzed by molybdate ions under basic condition Chemosphere 2005, 59, 321.
Dechlorination and destruction of 2,4,6-trichlorophenol and pentachlorophenol using hydrogen peroxide as the oxidant catalyzed by molybdate ions under basic conditionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitF2jsbg%3D&md5=c3637628be3c88945de6b941c98b9221CAS |

[10]  M. B. Carvalho, S. Tavares, J. Medeiros, O. Núñez, H. Gallart, M. C. Leitão, Degradation pathway of pentachlorophenol by Mucor plumbeus involves phase II conjugation and oxidation-reduction reactions J. Hazard. Mater. 2011, 198, 133.
Degradation pathway of pentachlorophenol by Mucor plumbeus involves phase II conjugation and oxidation-reduction reactionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFWqs7%2FO&md5=d34fdfdeb627f95225521641980aa4c7CAS |

[11]  M. Oturan, N. Oturan, C. Lahitte, Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent: Application to the mineralization of an organic micropollutant, pentachlorophenol J. Electroanal. Chem. 2001, 507, 96.
Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent: Application to the mineralization of an organic micropollutant, pentachlorophenolCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFyitLY%3D&md5=2367b6ed7969a9082d228bfa2343bf81CAS |

[12]  J. Gunlazuardi, W. Lindu, Photocatalytic degradation of pentachlorophenol in aqueous solution employing immobilized TiO2 supported on titanium metal J. Photoch. Photobio. A 2005, 173, 51.
Photocatalytic degradation of pentachlorophenol in aqueous solution employing immobilized TiO2 supported on titanium metalCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFWnu70%3D&md5=30436f396e935c264a5fa49905e8f88cCAS |

[13]  Y. Li, J. Niu, L. Yin, Photocatalytic degradation kinetics and mechanism of pentachlorophenol based on superoxide radicals J. Environ. Sci. (China) 2011, 23, 1911.
Photocatalytic degradation kinetics and mechanism of pentachlorophenol based on superoxide radicalsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1CrtbzO&md5=27bbeb815304afbe914b6a5ac593ba80CAS |

[14]  S. H. Lee, J. B. Carberry, Biodegradation of PCP enhanced by chemical oxidation pretreatment Water Environ. Res. 1992, 64, 682.
Biodegradation of PCP enhanced by chemical oxidation pretreatmentCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlslOmu78%3D&md5=e857911896115e8d20233c6c4601d08eCAS |

[15]  M. Fukushima, K. Tatsumi, Effects of humic substances on the oxidation of pentachlorophenol by peroxosulfate catalyzed by iron(III)-phthalocyanine-tetrasulfonic acid Bioresour. Technol. 2006, 97, 1605.
Effects of humic substances on the oxidation of pentachlorophenol by peroxosulfate catalyzed by iron(III)-phthalocyanine-tetrasulfonic acidCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1Ggsrk%3D&md5=b351fb8c61bb00b91b5a00c7a6a1423bCAS |

[16]  A. Oubina, D. Puig, J. Gas, Determination of pentachlorophenol in certified waste waters, soil samples and industrial effluents using ELISA and liquid solid extraction followed by liquid chromatography Anal. Chim. Acta 1997, 346, 49.
Determination of pentachlorophenol in certified waste waters, soil samples and industrial effluents using ELISA and liquid solid extraction followed by liquid chromatographyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvValtLo%3D&md5=0d46e72da86850a78676d266a32d81c3CAS |

[17]  M. Tripathi, S. K. Garg, Co-remediation of pentachlorophenol and Cr6+ by free and immobilized cells of native Bacillus cereus isolate: Spectrometric characterization of PCP dechlorination products, bioreactor trial and chromate reductase activity Process Biochem. 2013, 48, 496.
Co-remediation of pentachlorophenol and Cr6+ by free and immobilized cells of native Bacillus cereus isolate: Spectrometric characterization of PCP dechlorination products, bioreactor trial and chromate reductase activityCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFChu7Y%3D&md5=77b535460274529798e5cf18720a2fc1CAS |

[18]  U. D. Patel, S. Suresh, Complete dechlorination of pentachlorophenol using palladized bacterial cellulose in a rotating catalyst contact reactor J. Colloid Interface Sci. 2008, 319, 462.
Complete dechlorination of pentachlorophenol using palladized bacterial cellulose in a rotating catalyst contact reactorCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGmsLg%3D&md5=e74d5afac4cc82d615ddcb53379354d0CAS |

[19]  J. Suegara, B.-D. Lee, M. P. Espino, S. Nakai, M. Hosomi, Photodegradation of pentachlorophenol and its degradation pathways predicted using density functional theory Chemosphere 2005, 61, 341.
Photodegradation of pentachlorophenol and its degradation pathways predicted using density functional theoryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVegtLjN&md5=e73c904d888e34e2aec29aff2bac8f9cCAS |

[20]  K. R. Reddy, K. Darko-Kagya, A. Z. Al-Hamdan, Electrokinetic remediation of pentachlorophenol-contaminated clay soil Water Air Soil Pollut. 2011, 221, 35.
Electrokinetic remediation of pentachlorophenol-contaminated clay soilCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2qs77M&md5=5bfa245daea2bbd0c31aab5e890fda06CAS |

[21]  Environmental Protection Agency Priority Pollutant List. Available at https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf, 2014 (verified 19 October 2017).

[22]  European Commission Priority Substances and Certain Other Pollutants according to Annex II of Directive 2008/105/EC. Available at http://ec.europa.eu/environment/water/water-framework/priority_substances.htm, 2016 (verified 19 October 2017).

[23]  Z. Sun, H. Ge, X. Hu, Y. Peng, Preparation of foam-nickel composite electrode and its application to 2,4-dichlorophenol dechlorination in aqueous solution Separ. Purif. Tech. 2010, 72, 133.
Preparation of foam-nickel composite electrode and its application to 2,4-dichlorophenol dechlorination in aqueous solutionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFCjurw%3D&md5=0feef69b65d7ffb6c9a25d2461308885CAS |

[24]  K. Govindan, S. Murugesan, P. Maruthamuthu, Photocatalytic degradation of pentachlorophenol in aqueous solution by visible light sensitive N-F-codoped TiO2 photocatalyst Mater. Res. Bull. 2013, 48, 1913.
Photocatalytic degradation of pentachlorophenol in aqueous solution by visible light sensitive N-F-codoped TiO2 photocatalystCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVelsL4%3D&md5=eee2ab677709d39b6d3ac4c0bc194f6bCAS |

[25]  G. L. Cohen, G. Atkinson, The formation and characterization of the tetrahydroxyargentate (III) ion in alkaline solution J. Electrochem. Soc. 1968, 115, 1236.
The formation and characterization of the tetrahydroxyargentate (III) ion in alkaline solutionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXhs1CqtA%3D%3D&md5=32e55ac7b75a1a99133e4c319205f2acCAS |

[26]  L. Kirschenbaum, G. Atkinson, Kinetics of silver (III) complexation by periodate and tellurate ions Inorg. Chem. 1973, 12, 2832.
Kinetics of silver (III) complexation by periodate and tellurate ionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXlsV2ru7k%3D&md5=001139cce8355d6d1d8569cf933e5a2aCAS |

[27]  L. Kirschenbaum, L. Mrozowski, Kinetics of silver (III) decomposition in dilute acid Inorg. Chem. 1978, 17, 3718.
Kinetics of silver (III) decomposition in dilute acidCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXmt1Wmtbk%3D&md5=d7e45e79e83699fcc2614959af1be800CAS |

[28]  E. T. Borish, L. J. Kirschenbaum, Kinetics and mechanism of the reaction between silver (III) and azide ion Inorg. Chem. 1984, 23, 2355.
Kinetics and mechanism of the reaction between silver (III) and azide ionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXksVCjtLs%3D&md5=24a0ee1adfd19f35c5b475f6c9daa141CAS |

[29]  J. Rush, L. Kirschenbaum, The reaction of the tetrahydroxoargentate (III) ion with thiosulfate Inorg. Chem. 1985, 24, 744.
The reaction of the tetrahydroxoargentate (III) ion with thiosulfateCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht1Slurg%3D&md5=5d8238d8d1b50d3debde5097a630a95dCAS |

[30]  L. Kirschenbaum, K. Panda, Kinetics and mechanism of the reaction between butylphenolate anion and tetrahydroxoargentate (III) in aqueous alkaline media J. Chem. Soc., Dalton Trans. 1989, 217.

[31]  L. Kirschenbaum, K. Panda, E. Borish, Vicinal dioximate complexes of silver (III) Inorg. Chem. 1989, 28, 3623.
Vicinal dioximate complexes of silver (III)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlt1WqtL0%3D&md5=512c064de9f0975d34dd306dfd196409CAS |

[32]  N. Mehrotra, L. Kirschenbaum, Kinetics and mechanism of the oxidation of hypophosphite ion by the tetrahydroxoargentate (III) ion Inorg. Chem. 1989, 28, 4327.
Kinetics and mechanism of the oxidation of hypophosphite ion by the tetrahydroxoargentate (III) ionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmsVWisro%3D&md5=2a1193cba7520e71652399f0b554d8ddCAS |

[33]  I. Kouadio, L. Kirschenbaum, N. Mehrotra, The oxidation of iodide ion by the tetrahydroxoargentate (III) ion in aqueous alkaline media J. Chem. Soc., Dalton Trans. 1990, 1929.
The oxidation of iodide ion by the tetrahydroxoargentate (III) ion in aqueous alkaline mediaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltl2lsL8%3D&md5=942bed12c94c295cf31576bb6f37c2a1CAS |

[34]  I. Kouadio, L. Kirschenbaum, N. Mehrotra, Silver (III) oxidation of DL-mandelate ion J. Chem. Soc. Perkin Trans. 2 1990, 2123.
Silver (III) oxidation of DL-mandelate ionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXht1Wiu7w%3D&md5=d7eb569fa4ef520ca4522a04a9c8b73fCAS |

[35]  L. Kirschenbaum, S. Yunfu, The reduction of the tetrahydroxoargentate (III) ion by thiocyanate in aqueous alkaline media Inorg. Chem. 1991, 30, 2360.
The reduction of the tetrahydroxoargentate (III) ion by thiocyanate in aqueous alkaline mediaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitlGku7c%3D&md5=e6769a668077389ce46ee39fb6ec9ffeCAS |

[36]  S. Yunfu, L. Kirschenbaum, The oxidation of cyanide ion by silver (III) in alkaline media J. Coord. Chem. 1992, 262, 127.

[37]  I. R. Zamora-Garcia, A. Alatorre-Ordaz, J. G. Ibanez, M. G. Garcia-Jimenez, Y. Nosaka, T. Kobayashi, S. Sugita, Thermodynamic and electrochemical study on the mechanism of formation of Ag(OH)4− in alkaline media Electrochim. Acta 2013, 111, 268.
Thermodynamic and electrochemical study on the mechanism of formation of Ag(OH)4 in alkaline mediaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCrurnI&md5=38b5f07b91f84a3d5cab987a6799d3f3CAS |

[38]  I. R. Zamora-Garcia, A. Alatorre-Ordaz, J. G. Ibanez, J. C. Torres-Elguera, K. Wrobel, S. Gutierrez-Granados, Efficient degradation of selected dyes using the tetrahydroxoargentate ion, Ag(OH)4− in alkaline media Chemosphere 2018, 191, 400.
Efficient degradation of selected dyes using the tetrahydroxoargentate ion, Ag(OH)4 in alkaline mediaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhs1yjsb%2FO&md5=d7a95633dcf27906c6537320d92295e5CAS |

[39]  C. Lin, S. Tseng, Electrochemically reductive dechlorination of pentachlorophenol using a high overpotential zinc cathode Chemosphere 1999, 39, 2375.
Electrochemically reductive dechlorination of pentachlorophenol using a high overpotential zinc cathodeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1Onu7Y%3D&md5=737bda8aa7b2793660bba3e8be15b178CAS |

[40]  N. Ross, R. Spackman, M. Hitchman, P. White, An investigation of the electrochemical reduction of pentachlorophenol with analysis by HPLC J. Appl. Electrochem. 1997, 27, 51.
An investigation of the electrochemical reduction of pentachlorophenol with analysis by HPLCCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFOitb4%3D&md5=1485d9b3fc28c351b34cc75e42576fb5CAS |

[41]  A. J. Bard, R. Parsons, J. Jordan, (Eds.) Standard Potentials in Aqueous Solution 1985 (M. Dekker: New York).

[42]  J. Hong, D.-G. Kim, C. Cheong, S.-Y. Jung, M.-R. Yoo, K.-J. Kim, T.-K. Kim, Y.-C. Park, Identification of photolytical transformation products of pentachlorophenol in water Anal. Sci. 2000, 16, 621.
Identification of photolytical transformation products of pentachlorophenol in waterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksVOit70%3D&md5=9f802e1bddd5e1de6e503515e2550307CAS |

[43]  B. G. Kwon, J. H. Lee, A kinetic method for HO2•/O2•¯ determination in advanced oxidation processes Anal. Chem. 2004, 76, 6359.
A kinetic method for HO2/O2•¯ determination in advanced oxidation processesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvF2rtLk%3D&md5=927ff7079400ec622058a7280213ae90CAS |

[44]  D. A. Armstrong, R. E. Huie, S. Lymar, W. H. Koppenol, G. Merényi, P. Neta, D. M. Stanbury, S. Steenken, P. Wardman, Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals Bioinorg. React. Mech. 2013, 9, 59.
Standard electrode potentials involving radicals in aqueous solution: Inorganic radicalsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslenur8%3D&md5=0de72acfebfd376342f9b835ac45db40CAS |

[45]  D. M. C. Dias, J. M. Copeland, C. L. Milliken, X. Shi, J. L. Ferry, T. J. Shaw, Production of reactive oxygen species in the rhizosphere of a Spartina-dominated salt marsh systems Aquat. Geochem. 2016, 22, 573.
Production of reactive oxygen species in the rhizosphere of a Spartina-dominated salt marsh systemsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitVGqsrvK&md5=f9bf514614b877aa62fc3517d01c0439CAS |

[46]  K. Fujiwara, H. Kumata, N. Kando, E. Sakuma, M. Aihara, Y. Morita, T. Miyakawa, Flow injection analysis to measure the production ability of superoxide with chemiluminescence detection in natural waters Int. J. Environ. Anal. Chem. 2006, 86, 337.
Flow injection analysis to measure the production ability of superoxide with chemiluminescence detection in natural watersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt12ht7Y%3D&md5=fb20d4f1312a94b79906da7b248fe174CAS |

[47]  T. Mokudai, K. Nakamura, T. Kanno, Y. Niwano, Presence of hydrogen peroxide, a source of hydroxyl radicals, in acid electrolyzed water PLoS One 2012, 7, e46392.
Presence of hydrogen peroxide, a source of hydroxyl radicals, in acid electrolyzed waterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFShsLvN&md5=62d3e8674b0fdd55373a3eb502654928CAS |

[48]  G.-X. Tan, Y.-P. Chen, X.-P. Xu, Ozone decomposition in gas phase and aqueous solution Shanghai Daxue Xuebao, Ziran Kexueban 2005, 11, 510.
| 1:CAS:528:DC%2BD2MXht1Ciu7%2FI&md5=81fc0aca2109f589a4f6062e2bf5ae3bCAS |

[49]  J. A. Zimbron, K. Reardon, Fenton’s oxidation of pentachlorophenol Water Res. 2009, 43, 1831.
Fenton’s oxidation of pentachlorophenolCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVCmtLY%3D&md5=28eb85415c517942c594a6ca877600d0CAS |

[50]  Ch. Qi, X. Liu, W. Zhao, Ch. Lin, J. Ma, W. Shi, Q. Sun, H. Xiao, Degradation and dechlorination of pentachlorophenol by microwave-activated persulfate Environ. Sci. Pollut. Res. Int. 2015, 22, 4670.
Degradation and dechlorination of pentachlorophenol by microwave-activated persulfateCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGltbjL&md5=6dce53f8ebcc48d6cd31ffa5dcbc4a4fCAS |

[51]  S. Chen, C.-Y. Hsu, P. M. Berthouex, Fate and modeling of pentachlorophenol degradation in a laboratory-scale anaerobic sludge digester J. Environ. Eng. 2006, 132, 795.
Fate and modeling of pentachlorophenol degradation in a laboratory-scale anaerobic sludge digesterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVGkurk%3D&md5=f3dcd9c1b88983713f528689bde92625CAS |