Thermodynamic stability of mercury(II) complexes formed with environmentally relevant low-molecular-mass thiols studied by competing ligand exchange and density functional theory
Van Liem-Nguyen A , Ulf Skyllberg B , Kwangho Nam A and Erik Björn A CA Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
B Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
C Corresponding author. Email: erik.bjorn@umu.se
Environmental Chemistry 14(4) 243-253 https://doi.org/10.1071/EN17062
Submitted: 11 March 2017 Accepted: 27 May 2017 Published: 23 June 2017
Environmental context. The chemical speciation of mercury (Hg) largely controls its biogeochemical cycling and exposure to biota. Here, we investigate the thermodynamic stabilities of complexes formed between inorganic divalent Hg (HgII) and 15 biogeochemically relevant low-molecular-mass (LMM) thiol ligands. This information is critical for accurate modelling of the chemical speciation of HgII and to clarify the role of HgII–LMM thiol complexes in the cycling of Hg in the environment.
Abstract. Inorganic divalent mercury (HgII) has a very high affinity for reduced sulfur functional groups. Reports from laboratory experiments suggest that HgII complexes with specific low-molecular-mass (LMM) thiol (RSH) ligands control rates of HgII transformation reactions. Because of methodological limitations for precise determination of the highly stable HgII complexes with LMM thiol ligands, constants reported in the literature remain inconsistent. This uncertainty impedes accurate modelling of the chemical speciation of HgII and the possibility to elucidate the role of HgII complexes with LMM thiols for Hg transformation reactions. Here, we report values of thermodynamic stability constants for 15 monodentate, two-coordinated HgII complexes, Hg(SR)2, formed with biogeochemically relevant LMM thiol ligands. The constants were determined by a two-step ligand-exchange procedure where the specific Hg(SR)2 complexes were quantified by liquid chromatography–inductively coupled plasma mass spectrometry. Thermodynamic stability constants (log β2) determined for the Hg(SR)2 complexes ranged from 34.6, N-cysteinylglycine, to 42.1, 3-mercaptopropionic acid, for the general reaction Hg2+ + 2RS– ⇌ Hg(SR)2. Density functional theory (DFT) calculations showed that electron-donating carboxyl and carbonyl groups have a stabilising effect on the HgII–LMM thiol complexes, whereas electron-withdrawing protonated primary amino groups have a destabilising effect. Experimental results and DFT calculations demonstrated that the presence of such functional groups in the vicinity of the RSH group caused significant differences in the stability of Hg(SR)2 complexes. These differences are expected to be important for the chemical speciation of HgII and its transformation reactions in environments where a multitude of LMM thiol compounds are present.
References
[1] U. Skyllberg, Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: illumination of controversies and implications for MeHg net production. J. Geophys. Res. Biogeosci. 2008, 113, G00C03.[2] J. M. Parks, A. Johs, M. Podar, R. Bridou, R. A. Hurt, S. D. Smith, S. J. Tomanicek, Y. Qian, S. D. Brown, C. C. Brandt, A. V. Palumbo, J. C. Smith, J. D. Wall, D. A. Elias, L. Y. Liang, The genetic basis for bacterial mercury methylation. Science 2013, 339, 1332.
| The genetic basis for bacterial mercury methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVaqtL8%3D&md5=b05e5491317702afcbf0bdadc4764339CAS |
[3] C. C. Gilmour, M. Podar, A. L. Bullock, A. M. Graham, S. D. Brown, A. C. Somenahally, A. Johs, R. A. Hurt, K. L. Bailey, D. A. Elias, Mercury methylation by novel microorganisms from new environments. Environ. Sci. Technol. 2013, 47, 11810.
| Mercury methylation by novel microorganisms from new environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVahsrfM&md5=362e4decb22ee30ad89a9788e73a208dCAS |
[4] J. K. Schaefer, F. M. M. Morel, High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nat. Geosci. 2009, 2, 123.
| High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1amt7k%3D&md5=6bc8f646b909c52429f1878b051e247cCAS |
[5] J. K. Schaefer, S. S. Rocks, W. Zheng, L. Y. Liang, B. H. Gu, F. M. M. Morel, Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc. Natl. Acad. Sci. USA 2011, 108, 8714.
| Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVGqurk%3D&md5=589f1e6a32dcd92bc64c097dd5786200CAS |
[6] V. Liem-Nguyen, S. Bouchet, E. Björn, Determination of sub-nanomolar levels of low molecular mass thiols in natural waters by liquid chromatography–tandem mass spectrometry after derivatization with p-(hydroxymercuri)benzoate and online preconcentration. Anal. Chem. 2015, 87, 1089.
| Determination of sub-nanomolar levels of low molecular mass thiols in natural waters by liquid chromatography–tandem mass spectrometry after derivatization with p-(hydroxymercuri)benzoate and online preconcentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFehsLrM&md5=2e5472902bd836c69b7b37a5b16f60d1CAS |
[7] C. L. Dryden, A. S. Gordon, J. R. Donat, Seasonal survey of copper-complexing ligands and thiol compounds in a heavily utilized, urban estuary: Elizabeth River, Virginia. Mar. Chem. 2007, 103, 276.
| Seasonal survey of copper-complexing ligands and thiol compounds in a heavily utilized, urban estuary: Elizabeth River, Virginia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslemsw%3D%3D&md5=07c3bdd3579c99c1e043ce7810a69bceCAS |
[8] J. Zhang, F. Wang, J. D. House, B. Page, Thiols in wetland interstitial waters and their role in mercury and methylmercury speciation. Limnol. Oceanogr. 2004, 49, 2276.
| Thiols in wetland interstitial waters and their role in mercury and methylmercury speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWqtLfK&md5=e028c976efc04213bf5cef16e31c863fCAS |
[9] H. Kõszegi-Szalai, T. Paal, Equilibrium studies of mercury(II) complexes with penicillamine. Talanta 1999, 48, 393.
| Equilibrium studies of mercury(II) complexes with penicillamine.Crossref | GoogleScholarGoogle Scholar |
[10] V. Mah, F. Jalilehvand, Glutathione complex formation with mercury(II) in aqueous solution at physiological pH. Chem. Res. Toxicol. 2010, 23, 1815.
| Glutathione complex formation with mercury(II) in aqueous solution at physiological pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Ogs7rF&md5=ecbe52909fb85b12d424262768903712CAS |
[11] F. Jalilehvand, B. O. Leung, M. Izadifard, E. Damian, Mercury(II) cysteine complexes in alkaline aqueous solution. Inorg. Chem. 2006, 45, 66.
| Mercury(II) cysteine complexes in alkaline aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12rtbrO&md5=97308245fb55e80d498a3e0c72f475b2CAS |
[12] B. O. Leung, F. Jalilehvand, V. Mah, Mercury(II) penicillamine complex formation in alkaline aqueous solution. Dalton Trans. 2007, 4666.
| Mercury(II) penicillamine complex formation in alkaline aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKrtr7M&md5=6f82efe862b24730a7e351a6b847f685CAS |
[13] F. Jalilehvand, K. Parmar, S. Zielke, Mercury(II) complex formation with N-acetylcysteine. Metallomics 2013, 5, 1368.
| Mercury(II) complex formation with N-acetylcysteine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGrsLjJ&md5=e2c4f0bfaa3a819952b551d894ab72a0CAS |
[14] J. Casas, M. M. Jones, Mercury(II) complexes with sulfhydryl containing chelating agents: stability constant inconsistencies and their resolution. J. Inorg. Nucl. Chem. 1980, 42, 99.
| Mercury(II) complexes with sulfhydryl containing chelating agents: stability constant inconsistencies and their resolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhvVKlsLo%3D&md5=25905634299b8aaf9445ef9a98acc032CAS |
[15] M. A. Basinger, J. Casas, M. M. Jones, A. D. Weaver, N. H. Weinstein, Structural requirements for Hg(II) antidotes. J. Inorg. Nucl. Chem. 1981, 43, 1419.
| Structural requirements for Hg(II) antidotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXltV2ls78%3D&md5=d75b2041b47937f8d5792a8fa8929130CAS |
[16] W. Van Der Linden, C. Beers, Determination of the composition and the stability constants of complexes of mercury(II) with amino acids. Anal. Chim. Acta 1974, 68, 143.
| Determination of the composition and the stability constants of complexes of mercury(II) with amino acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXmtVWluw%3D%3D&md5=d4e4782cc3582ba48a3190f826342616CAS |
[17] J. Starý, K. Kratzer, Radiometric determination of stability constants of mercury species complexes with L-cysteine. J. Radioanal. Nucl. Chem. 1988, 126, 69.
| Radiometric determination of stability constants of mercury species complexes with L-cysteine.Crossref | GoogleScholarGoogle Scholar |
[18] P. Cardiano, G. Falcone, C. Foti, S. Sammartano, Sequestration of Hg2+ by some biologically important thiols. J. Chem. Eng. Data 2011, 56, 4741.
| Sequestration of Hg2+ by some biologically important thiols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1OrsbfM&md5=a5130e423676b9a474e8a97296d990b9CAS |
[19] P. Cardiano, D. Cucinotta, C. Foti, O. Giuffre, S. Sammartano, Potentiometric, calorimetric, and 1H NMR investigation on Hg2+–mercaptocarboxylate interaction in aqueous solution. J. Chem. Eng. Data 2011, 56, 1995.
| Potentiometric, calorimetric, and 1H NMR investigation on Hg2+–mercaptocarboxylate interaction in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFCisL4%3D&md5=342acd4057390c17ed95c81f81706938CAS |
[20] H. Hu, S. E. Mylon, G. Benoit, Distribution of the thiols glutathione and 3-mercaptopropionic acid in Connecticut lakes. Limnol. Oceanogr. 2006, 51, 2763.
| Distribution of the thiols glutathione and 3-mercaptopropionic acid in Connecticut lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWltbrE&md5=76cd2bba5c40ab461a9673ed3b93e945CAS |
[21] Y. Nygren, E. Bjorn, Mobile phase selection for the combined use of liquid chromatography-inductively coupled plasma mass spectrometry and electrospray ionisation mass spectrometry. J. Chromatogr. A 2010, 1217, 4980.
| Mobile phase selection for the combined use of liquid chromatography-inductively coupled plasma mass spectrometry and electrospray ionisation mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVyktrw%3D&md5=bfc8102cce3d65b4dfdb138b62d33213CAS |
[22] IUPAC, Ionic Strength Corrections for Stability Constants using Specific Interaction Theory (SIT), Version 1 2004 (International Union of Pure and Applied Chemistry: Zürich, Switzerland).
[23] M. Karlsson, J. Lindgren, WinSGW 2006 (Majo: Umeå, Sweden). Available at http://www.winsgw.se/WinSGW_eng.htm [verified 4 June 2017].
[24] I. Ugur, A. Marion, S. Parant, J. H. Jensen, G. Monard, Rationalization of the pKa values of alcohols and thiols using atomic charge descriptors and its application to the prediction of amino acid pKas. J. Chem. Inf. Model. 2014, 54, 2200.
| Rationalization of the pKa values of alcohols and thiols using atomic charge descriptors and its application to the prediction of amino acid pKas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1GlurvP&md5=fe591b39662c7d85f9c6c5134d20cac1CAS |
[25] A. E. Reed, R. B. Weinstock, F. Weinhold, Natural population analysis. J. Chem. Phys. 1985, 83, 735.
| Natural population analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltFSisLY%3D&md5=e8eb9d3393a0a25eafb829a05d3e2370CAS |
[26] Y. Zhao, D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215.
| The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyltbY%3D&md5=7a80ed99b11a0ab4dffea0df7a2b2976CAS |
[27] Y. Zhao, D. G. Truhlar, Density functionals with broad applicability in chemistry. Acc. Chem. Res. 2008, 41, 157.
| Density functionals with broad applicability in chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksV2iug%3D%3D&md5=f693adbab56d7c455817a7456cf04728CAS |
[28] V. Barone, M. Cossi, Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 1998, 102, 1995.
| Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXht1Cgt7o%3D&md5=2bb60b3a557f290e3fd6d43d8b1884e6CAS |
[29] A. Martell, R. Smith, R. Motekaitis, National Institute of Standard and Technology (NIST), Critically Selected Stability Constants of Metal Complexes. 2004 (PC-based Database: Gaithersburg, MD).
[30] C. Lee, W. Yang, R. G. Parr, Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785.
| Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=daa12517ea0456b8ea767a1f2d39a332CAS |
[31] A. D. Becke, Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648.
| Density‐functional thermochemistry. III. The role of exact exchange.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=e1050c5a759f43438097a605e1ab2796CAS |
[32] F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297.
| Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFWgu7o%3D&md5=917797a6049ae051f8d3de39e67005e8CAS |
[33] S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456.
| 1:CAS:528:DC%2BC3MXjsF2isL0%3D&md5=f96abbabb1c6e355eca9df3eae1dfee8CAS |
[34] M. M. Montero-Campillo, A. M. Lamsabhi, O. Mó, M. Yáñez, Alkyl mercury compounds: an assessment of DFT methods. Theor. Chem. Acc. 2013, 132, 1328.
| Alkyl mercury compounds: an assessment of DFT methods.Crossref | GoogleScholarGoogle Scholar |
[35] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision D. 01 2013 (Gaussian. Inc.: Wallingford, CT).
[36] T. Warner, F. Jalilehvand, Formation of Hg(II) tetrathiolate complexes with cysteine at neutral pH. Can. J. Chem. 2016, 94, 373.
| Formation of Hg(II) tetrathiolate complexes with cysteine at neutral pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhtl2ntg%3D%3D&md5=1bea52cf1d11646999383778489a1a12CAS |
[37] W. Stricks, I. Kolthoff, Reactions between mercuric mercury and cysteine and glutathione. Apparent dissociation constants, heats and entropies of formation of various forms of mercuric mercapto-cysteine and -glutathione. J. Am. Chem. Soc. 1953, 75, 5673.
| Reactions between mercuric mercury and cysteine and glutathione. Apparent dissociation constants, heats and entropies of formation of various forms of mercuric mercapto-cysteine and -glutathione.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXmtVWktw%3D%3D&md5=b4c3784ba9f632ac6c96cc63b004e354CAS |
[38] P. D. Oram, X. Fang, Q. Fernando, P. Letkeman, D. Letkeman, The formation constants of mercury(II)–glutathione complexes. Chem. Res. Toxicol. 1996, 9, 709.
| The formation constants of mercury(II)–glutathione complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivVOqtbY%3D&md5=3c5420597ca8da9e2dcf48ddf38fb01bCAS |
[39] B. Hilton, M. Man, E. Hsi, R. Bryant, NMR studies of mercurial–halogen equilibria. J. Inorg. Nucl. Chem. 1975, 37, 1073.
| NMR studies of mercurial–halogen equilibria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXktlers7w%3D&md5=d6ef563ddae3404fcaf037f14538cd76CAS |
[40] K. L. Pei, M. Sooriyaarachchi, D. A. Sherrell, G. N. George, J. Gailer, Probing the coordination behavior of Hg2+, CH3Hg+, and Cd2+ towards mixtures of two biological thiols by HPLC-ICP-AES. J. Inorg. Biochem. 2011, 105, 375.
| Probing the coordination behavior of Hg2+, CH3Hg+, and Cd2+ towards mixtures of two biological thiols by HPLC-ICP-AES.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFOru74%3D&md5=44c68f30a3ab5325c79b78005525dae0CAS |
[41] N. Ballatori, T. W. Clarkson, Biliary secretion of glutathione and of glutathione–metal complexes. Toxicol. Sci. 1985, 5, 816.
| Biliary secretion of glutathione and of glutathione–metal complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xhs1Sqtg%3D%3D&md5=6a770cdce55857f21bf693d78bb7b05fCAS |
[42] D. L. Rabenstein, A. A. Isab, A proton nuclear magnetic resonance study of the interaction of mercury with intact human erythrocytes. Biochim. Biophys. Acta, Mol. Cell Res. 1982, 721, 374.
| 1:CAS:528:DyaL3sXkvVagsA%3D%3D&md5=b4d8c60b00dd36e76670967dd184ccb5CAS |
[43] D. L. Rabenstein, A. A. Isab, R. S. Reid, A proton nuclear magnetic resonance study of the binding of methylmercury in human erythrocytes. Biochim. Biophys. Acta, Mol. Cell Res. 1982, 720, 53.
| 1:CAS:528:DyaL38XpvFSiug%3D%3D&md5=8e14fb86179f5b924381e138aa111155CAS |
[44] J. Fu, R. E. Hoffmeyer, M. J. Pushie, S. P. Singh, I. J. Pickering, G. N. George, Towards a custom chelator for mercury: evaluation of coordination environments by molecular modeling. J. Biol. Inorg. Chem. 2011, 16, 15.
| Towards a custom chelator for mercury: evaluation of coordination environments by molecular modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKrt7jL&md5=1db38abcfa1a61f6087bf7896ae228d1CAS |
[45] U. Skyllberg, P. R. Bloom, J. Qian, C. M. Lin, W. F. Bleam, Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ. Sci. Technol. 2006, 40, 4174.
| Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVGgt70%3D&md5=4857644993cb2eb13a647c003426ea35CAS |
[46] J. Watts, E. Howell, J. K. Merle, Theoretical studies of complexes between Hg(II) ions and L‐cysteinate amino acids. Int. J. Quantum Chem. 2014, 114, 333.
| Theoretical studies of complexes between Hg(II) ions and L‐cysteinate amino acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsF2ns7rF&md5=3e29caa6e69e166f93e58dbfbf0f9c73CAS |
[47] G. N. George, R. C. Prince, J. Gailer, G. A. Buttigieg, M. B. Denton, H. H. Harris, I. J. Pickering, Mercury binding to the chelation therapy agents DMSA and DMPS and the rational design of custom chelators for mercury. Chem. Res. Toxicol. 2004, 17, 999.
| Mercury binding to the chelation therapy agents DMSA and DMPS and the rational design of custom chelators for mercury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVaqtrk%3D&md5=e9bef148093cabfff8b23214d7c6cae4CAS |
[48] V. Mah, F. Jalilehvand, Mercury (II) complex formation with glutathione in alkaline aqueous solution. J. Biol. Inorg. Chem. 2008, 13, 541.
| Mercury (II) complex formation with glutathione in alkaline aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Shtbo%3D&md5=5cb08c8c6a37d419beec7905273ce324CAS |
[49] A. Manceau, C. Lemouchi, M. Rovezzi, M. Lanson, P. Glatzel, K. L. Nagy, I. Gautier-Luneau, Y. Joly, M. Enescu, Structure, bonding, and stability of mercury complexes with thiolate and thioether ligands from high-resolution XANES spectroscopy and first-principles calculations. Inorg. Chem. 2015, 54, 24.
| Structure, bonding, and stability of mercury complexes with thiolate and thioether ligands from high-resolution XANES spectroscopy and first-principles calculations.Crossref | GoogleScholarGoogle Scholar |