Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Foam placement for soil remediation

Henri Bertin A C , Estefania Del Campo Estrada A and Olivier Atteia B
+ Author Affiliations
- Author Affiliations

A Institut de Mécanique et d’Ingénierie (I2M), Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, France.

B Géoressources et Environnement-ENSEGID, Bordeaux INP, France.

C Corresponding author. Email: henri.bertin@u-bordeaux.fr

Environmental Chemistry 14(5) 338-343 https://doi.org/10.1071/EN17003
Submitted: 4 January 2017  Accepted: 6 June 2017   Published: 28 June 2017

Environmental context. Soil pollution is an important concern and remediation techniques, especially in situ techniques, should be studied. We investigate a new technique based on foam generation and placement inside the porous soil to improve the pollutant extraction. This technique could be useful when the soils are heterogeneous because it allows a complete soil sweeping.

Abstract. Foam can be generated in porous media, mainly by snap-off phenomena, by co-injecting gas and a surfactant solution. The liquid films that separate the gas bubbles, called lamellae, and gas trapping in small pores where capillary pressure is high generate a resistance to flow that drastically decreases fluid mobilities in porous media. Experiments performed with a 2D laboratory pilot consisting of two layers with different properties clearly highlight that foam is generated in the high-permeability layer and will divert flow towards the low-permeability region. This behaviour is of great interest for the remediation of heterogeneous polluted soils.


References

[1]  O. Atteia, E. Del Campo Estrada, H. Bertin, Soil flushing: a review of the origin of efficiency variability. Rev. Enviro. Sci. Bio/Technol. 2013, 12, 379.
Soil flushing: a review of the origin of efficiency variability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGnur%2FJ&md5=9c8a2a8fc17ee770cba9c0bd7e1bc06fCAS |

[2]  R. S. Seright, Improved Techniques for Fluid Diversion in Oil Recovery. Final Report (DOE/BC/14880–15), Contract No. DE-AC22–92BC14880 1995 (US Department of Energy). Available at https://digital.library.unt.edu/ark:/67531/metadc667143/m2/1/high_res_d/188919.pdf [Verified 15 June 2017].

[3]  H. J. Bertin, O. Apaydin, L. Castanier, A. R. Kovscek, Foam flow in heterogeneous porous media: effect of cross flow. Soc. Pet. Eng. J. 1999, 4, 75.

[4]  A. Kovscek, H. Bertin, Foam mobility in heterogeneous porous media I: scaling concepts. Transp. Porous Media 2003, 52, 17.
Foam mobility in heterogeneous porous media I: scaling concepts.Crossref | GoogleScholarGoogle Scholar |

[5]  A. Kovscek, H. Bertin, Foam mobility in heterogeneous porous media II: experimental observations. Transp. Porous Media 2003, 52, 37.
Foam mobility in heterogeneous porous media II: experimental observations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFCrurc%3D&md5=e805bb9c77b343c4af0e4f0ca52b377bCAS |

[6]  G. J. Hirasaki, The steam foam process. J. Pet. Technol. 1989, 41, 449.
| 1:CAS:528:DyaL1MXksVansrk%3D&md5=83c5ffe16235ac2b2776b9d7499f4409CAS |

[7]  T. C. Ransohoff, C. J. Radke, Mechanisms of foam generation in glass bead pack. SPE Reservoir Eng. 1988, 3, 573.
| 1:CAS:528:DyaL1cXltlWkurk%3D&md5=30408a62048ee356d58381879caee65bCAS |

[8]  G. J. Hirasaki, C. A. Miller, R. Szafranski, J. B. Lawson, N. Akiya, Surfactant/foam process for aquifer remediation, in International Symposium on Oilfield Chemistry, Houston, Texas, 18–21 February 1997, SPE-37257-MS (Society of Petroleum Engineers).

[9]  J. Maire, N. Coyer, N. Fatin-Rouge, Surfactant foam technology for in situ removal of chlorinated compounds-dNAPLs. J. Hazard. Mater. 2015, 299, 630.
Surfactant foam technology for in situ removal of chlorinated compounds-dNAPLs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1KlsLfM&md5=0c5dc300c3c133c1434d2121ce201775CAS |

[10]  J. J. Kilbane, P. Chowdiah, K. J. Kayser, B. Misra, K. A. Jackowski, V. J. Srivastava, G. N. Sethu, A. D. Nikolov, D. T. Wasan, T. D. Hayes, Remediation of contaminated soils using foams. Land Contamination & Reclamation 1997, 5, 41.

[11]  G. J. Hirasaki, R. E. Jackson, M. Jin, J. B. Lawson, J. Londergan, H. Meinardus, C. A. Miller, G. A. Pope, R. Szafranski, D. Tanzil, M. D. Annable, J. W. Jawitz, P. S. C. Rao, R. D. Rhue, T. J. Simpkin, Field demonstration of the surfactant/foam process for remediation of a heterogeneous aquifer contaminated with DNAPL, in NAPL Removal: Surfactants, Foams and Microemulsions (Eds S. Fiorenza, C. A. Miller, C. L. Oubre, C. H. Ward) 2000, pp. 1–163 (CRC Press: Boca Raton, FL).

[12]  S. Wang, C. N. Mulligan, Rhamnolipid foam enhanced remediation of cadmium and nickel contaminated soil. Water Air Soil Pollut. 2004, 157, 315.
Rhamnolipid foam enhanced remediation of cadmium and nickel contaminated soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFSmtrw%3D&md5=2691e027cd7fcab7c3a32994c9b3b913CAS |

[13]  H. Wang, J. Chen, Enhanced flushing of polychlorinated biphenyls contaminated sands using surfactant foam: effect of partition coefficient and sweep efficiency. J. Environ. Sci. 2012, 24, 1270.
Enhanced flushing of polychlorinated biphenyls contaminated sands using surfactant foam: effect of partition coefficient and sweep efficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ynsb7F&md5=4db4a8ff2c05a734d1df2968417bf91bCAS |

[14]  S. Gitipour, K. Narenjkar, E. S. Farvash, H. Asghari, Soil flushing of cresols contaminated soil: application of nonionic and ionic surfactants under different pH and concentrations. J. Environ. Health Sci. Eng. 2014, 12, 129.
Soil flushing of cresols contaminated soil: application of nonionic and ionic surfactants under different pH and concentrations.Crossref | GoogleScholarGoogle Scholar |

[15]  A. W. Harbaugh, E. R. Banta, M. C. Hill, M. G. McDonald, MODFLOW-2000, The US Geological Survey Modular Ground-Water Model – User Guide to Modularization Concepts and the Ground-Water Flow Process 2000 (US Geological Survey: Reston, VA).

[16]  C. Zheng, P. P. Wang, MT3DMS: a Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User’s Guide. Alabama University report. Report SERDP-99 1999.