Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

An adsorption and thermodynamic study of ofloxacin on marine sediments

Wen-Qing Cao A C , Jun Song A and Gui-Peng Yang A B D
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education–Qingdao Collaborative Innovation Center of Marine Science and Technology, Qingdao 266100, China.

B Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.

C Shandong Exit–Entry Inspection and Quarantine Technical Center, Qingdao 266002, Shandong, China.

D Corresponding author. Email: gpyang@ouc.edu.cn

Environmental Chemistry 14(6) 350-360 https://doi.org/10.1071/EN16188
Submitted: 6 December 2016  Accepted: 29 July 2017   Published: 28 November 2017

Environmental context. Ofloxacin, a widely used fluorinated antibiotic, is resistant to biodegradation and hence can accumulate in the environment. A systematic investigation of ofloxacin on marine sediments showed that sediment organic carbon and heterogeneous sites on sediments play important roles in adsorption processes. The results help our understanding of the environmental behaviour and fate of ofloxacin in marine systems.

Abstract. The adsorption behaviour of ofloxacin (OFL) on marine sediments treated by different methods was investigated using batch experiments. Three factors (sediment organic carbon content, salinity and temperature) that may affect the adsorption behaviour of OFL were analysed. The equilibrium time for OFL adsorption on marine sediment in natural seawater was ~4–5 h. The adsorption of OFL on all sediments with different treatments fitted the Freundlich model well. The adsorption parameter Kf value was in the order of Kf (H2O2 treatment) < Kf (H2O treatment) < Kf (HCl treatment) over the studied concentration range. The adsorption of OFL was influenced not only by the sediment organic carbon content but also by external factors such as salinity of media and temperature. The adsorption was favourably influenced by decreased salinity and temperature of seawater. The adsorption capacity of OFL on marine sediments decreased with an increase of temperature and salinity. The Kf values decreased from 33.73 ± 1.66 to 22.54 ± 1.12 (L kg−1)1/n when the temperature increased from 283 to 313 K. The changes in standard Gibbs free energy (ΔG0) and enthalpy (ΔH0) were −6.62 ± 0.34 kJ mol−1 and −7.58 ± 0.38 kJ mol−1 respectively, indicating that the adsorption process of OFL was spontaneous and exothermic. The positive value of the entropy change ΔS0 (i.e. 3.38 ± 0.17 J K−1 mol−1) suggests that the degree of freedom increased during the adsorption process.

Additional keywords: adsorption isotherms, fluoro pharmaceutical, marine environment, media, temperature.


References

[1]  A. K. Sarmah, M. T. Meyer, A. Boxall, A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725.
A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVGms7Y%3D&md5=c0a2b3ad7f661cb3aa05f7c7260975cdCAS |

[2]  K. Kümmerer (Ed.), Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks 2003 (Springer-Verlag: Berlin Heidelberg).

[3]  S. Park, K. Choi, Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology 2008, 17, 526.
Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVKnsLg%3D&md5=5326cb9ece99cd3e6e0d6e10050d779bCAS |

[4]  J. C. Chee-Sanford, R. I. Mackie, S. Koike, I. G. Krapac, Y.-F. Lin, A. C. Yannarell, S. Maxwell, R. I. Aminov, Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J. Environ. Qual. 2009, 38, 1086.
Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVGiurg%3D&md5=ac11bb249952f581440d25896a63e659CAS |

[5]  J. F. Yin, Z. H. Meng, M. J. Du, Pseudo-template molecularly imprinted polymer for selective screening of trace beta-lactam antibiotics in river and tap water. J. Chromatogr. A 2010, 1217, 5420.
Pseudo-template molecularly imprinted polymer for selective screening of trace beta-lactam antibiotics in river and tap water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlGgs70%3D&md5=eee4fb82d81f01276943d24b6ca084a9CAS |

[6]  S. Thiele-Bruhn, Pharmaceutical antibiotic compounds in soils – a review. J. Plant Nutr. Soil Sci. 2003, 166, 145.
Pharmaceutical antibiotic compounds in soils – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsFSrsL0%3D&md5=67ef0f2ad7eb3fbd697ca0d411dc3ef7CAS |

[7]  M. P. Schlüsener, K. Bester, Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. Environ. Pollut. 2006, 143, 565.
Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil.Crossref | GoogleScholarGoogle Scholar |

[8]  P. E. Stackelberg, J. Gibs, E. T. Furlong, M. T. Meyer, S. D. Zaugg, R. L. Lippincott, Efficiency of conventional drinking water treatment processes in removal of pharmaceuticals and other organic compounds. Sci. Total Environ. 2007, 377, 255.
Efficiency of conventional drinking water treatment processes in removal of pharmaceuticals and other organic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFyqtro%3D&md5=8ee8783df49800ab710279653f66bfc1CAS |

[9]  S. Zorita, L. Mårtensson, L. Mathiasson, Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Sci. Total Environ. 2009, 407, 2760.
Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVegsLg%3D&md5=22984778e5a11d2da3ac2412af1bbe05CAS |

[10]  X. Van Doorslaer, J. Dewulf, H. V. Langenhove, K. Demeestere, Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci. Total Environ. 2014, 500–501, 250.
Fluoroquinolone antibiotics: an emerging class of environmental micropollutants.Crossref | GoogleScholarGoogle Scholar |

[11]  G. W. Cheng, H. L. Wu, Y. L. Huang, Automated on-line microdialysis sampling coupled with high-performance liquid chromatography for simultaneous determination of malondialdehyde and ofloxacin in whole blood. Talanta 2009, 79, 1071.
Automated on-line microdialysis sampling coupled with high-performance liquid chromatography for simultaneous determination of malondialdehyde and ofloxacin in whole blood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslGlsrg%3D&md5=f4a4d6e0ce4ca731687c7cf6859dd988CAS |

[12]  R. N. Jones, L. B. Reller, L. A. Rosati, M. E. Erwin, M. L. Sanchez, The Ofloxacin Surveillance Group Ofloxacin, a new broad-spectrum fluoroquinolone results from a multicenter, national comparative activity surveillance study. Diagn. Microbiol. Infect. Dis. 1992, 15, 425.
Ofloxacin, a new broad-spectrum fluoroquinolone results from a multicenter, national comparative activity surveillance study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zlsVarsg%3D%3D&md5=d6d9990e1f7c97ed8182a7248d04176dCAS |

[13]  P. Vazquez-Roig, R. Segarra, C. Blasco, V. Andreu, Y. Picó, Determination of pharmaceuticals in soils and sediments by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 2471.
Determination of pharmaceuticals in soils and sediments by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVWks70%3D&md5=4ad74acf21e5a04b885e6aee68aaa9a8CAS |

[14]  S. D. Kim, J. Cho, I. S. Kim, B. D. Vanderford, S. A. Snyder, Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 2007, 41, 1013.
Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFCnsLY%3D&md5=7a548e1e44cdfae6cc0fdd61cc59c223CAS |

[15]  A. Y.-C. Lin, T. H. Yu, C. F. Lin, Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere 2008, 74, 131.
Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlylurnJ&md5=f7b4440d9e95e42147700afa9bab68dbCAS |

[16]  L. J. Zhou, G. G. Ying, J. L. Zhao, Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ. Pollut. 2011, 159, 1877.
Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVaju7s%3D&md5=4be7245b6af3d31d8986076f5f4f8369CAS |

[17]  E. M. Golet, I. Xifra, H. Siegrist, A. C. Alder, W. Giger, Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ. Sci. Technol. 2003, 37, 3243.
Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFWmu70%3D&md5=3ce2cd8d1f91e70c3fd0db29d11c013aCAS |

[18]  C. T. Chiou, L. J. Peter, V. H. Freed, A physical concept of soil-water equilibria for non-ionic organic compounds. Science 1979, 206, 831.
A physical concept of soil-water equilibria for non-ionic organic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXitFajsA%3D%3D&md5=f053cf4d34c6c355f20a17564460c285CAS |

[19]  P. Drillia, K. Stamatelatou, G. Lyberatos, Fate and mobility of pharmaceuticals in solid matrices. Chemosphere 2005, 60, 1034.
Fate and mobility of pharmaceuticals in solid matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvVWntrc%3D&md5=e7ba4f16def27f54a315f915cc8a4816CAS |

[20]  D. Vasudevan, G. L. Bruland, B. S. Torrance, V. G. Upchurch, A. A. MacKay, pH-dependent ciprofloxacin sorption to soils: interaction mechanisms and soil factors influencing sorption. Geoderma 2009, 151, 68.
pH-dependent ciprofloxacin sorption to soils: interaction mechanisms and soil factors influencing sorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFCntLo%3D&md5=159acf69e8bbd1b5add1b1be7bf3f995CAS |

[21]  R. A. Figueroa-Diva, D. Vasudevan, A. A. MacKay, Trends in soil sorption coefficients within common antimicrobial families. Chemosphere 2010, 79, 786.
Trends in soil sorption coefficients within common antimicrobial families.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFCku7g%3D&md5=1433bcd53088696e68887ec56976ab96CAS |

[22]  J. W. Kwon, K. L. Armbrust, Aqueous solubility, n-octanol–water partition coefficient, and sorption of five selective serotonin reuptake inhibitors to sediments and soils. Bull. Environ. Contam. Toxicol. 2008, 81, 128.
Aqueous solubility, n-octanol–water partition coefficient, and sorption of five selective serotonin reuptake inhibitors to sediments and soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotV2msbg%3D&md5=e56498545bc5dffc6c8ab2aa7acb01d1CAS |

[23]  K. W. Goyne, J. Chorover, J. D. Kubicki, A. R. Zimmerman, S. L. Brantley, Sorption of the antibiotic ofloxacin to mesoporous and non-porous alumina and silica. J. Colloid Interface Sci. 2005, 283, 160.
Sorption of the antibiotic ofloxacin to mesoporous and non-porous alumina and silica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVaqsb8%3D&md5=71348c3972e132872d72c82d947d82dbCAS |

[24]  H. B. Peng, B. Pan, M. Wu, R. Liu, D. Zhang, D. Wu, B. S. Xing, Adsorption of ofloxacin on carbon nanotubes: solubility, pH and cosolvent effects. J. Hazard. Mater. 2012, 211–212, 342.
Adsorption of ofloxacin on carbon nanotubes: solubility, pH and cosolvent effects.Crossref | GoogleScholarGoogle Scholar |

[25]  H. B. Peng, B. Pan, M. Wu, Y. Liu, D. Zhang, B. S. Xing, Adsorption of ofloxacin and norfloxacin on carbon nanotubes: hydrophobicity- and structure-controlled process. J. Hazard. Mater. 2012, 233–234, 89.
Adsorption of ofloxacin and norfloxacin on carbon nanotubes: hydrophobicity- and structure-controlled process.Crossref | GoogleScholarGoogle Scholar |

[26]  B. Pan, M. Qiu, M. Wu, D. Zhang, H. B. Peng, D. Wu, B. S. Xing, The opposite impacts of Cu and Mg cations on dissolved organic matter–ofloxacin interaction. Environ. Pollut. 2012, 161, 76.
The opposite impacts of Cu and Mg cations on dissolved organic matter–ofloxacin interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsV2jsQ%3D%3D&md5=ec18f07b73f1831861c5026bad642e24CAS |

[27]  B. Pan, P. Wang, M. Wu, J. Li, D. Zhang, D. Xiao, Sorption kinetics of ofloxacin in soils and mineral particles. Environ. Pollut. 2012, 171, 185.
Sorption kinetics of ofloxacin in soils and mineral particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVSlur%2FI&md5=98d9da5e0e8d755d0686d9f808855ff7CAS |

[28]  E. M. Van Wieren, M. D. Seymour, J. W. Peterson, Interaction of the fluoroquinolone antibiotic ofloxacin with titanium oxide nanoparticles in water: adsorption and breakdown. Sci. Total Environ. 2012, 441, 1.
Interaction of the fluoroquinolone antibiotic ofloxacin with titanium oxide nanoparticles in water: adsorption and breakdown.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslejtb%2FI&md5=5143acfb4646e48a06c0c65437e47d43CAS |

[29]  J. Drewes, T. Heberer, K. Reddersen, Fate of pharmaceuticals during indirect potable reuse. Water Sci. Technol. 2002, 46, 73.
| 1:CAS:528:DC%2BD38Xot1SqsL4%3D&md5=8dea5034a32f0dee49a4ab0d54dcf962CAS |

[30]  X. K. Zhao, G. P. Yang, P. Wu, N. H. Li, Study on adsorption of chlorobenzene on marine sediment. J. Colloid Interface Sci. 2001, 243, 273.
Study on adsorption of chlorobenzene on marine sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVOrtL0%3D&md5=a3048efd41a9a59426f5f485e40a7e19CAS |

[31]  Institute of Soil Science, CAS, Physical and Chemical Analysis of Soil 1978 (Shanghai Science and Technology Press: Shanghai, China).

[32]  G. P. Yang, Z. B. Zhang, Adsorption of dibenzothiophene on marine sediments treated by a sequential procedure. J. Colloid Interface Sci. 1997, 192, 398.
Adsorption of dibenzothiophene on marine sediments treated by a sequential procedure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtFGntLg%3D&md5=02b8a10837d41c17b637f020bebe259cCAS |

[33]  S. Rattanaphani, M. Chairat, J. B. Bremner, V. Rattanaphani, An adsorption and thermodynamic study of lac dyeing on cotton pretreated with chitosan. Dyes Pigments 2007, 72, 88.
An adsorption and thermodynamic study of lac dyeing on cotton pretreated with chitosan.Crossref | GoogleScholarGoogle Scholar |

[34]  M. S. Chiou, H. Y. Li, Equlibrium and kinetic modeling of adsorption of reactive dye on crosslinked chitosan beads. Journal of Hazard Material B 2002, 93, 233.
Equlibrium and kinetic modeling of adsorption of reactive dye on crosslinked chitosan beads.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVOks74%3D&md5=0d911b1f2835372eb62efcd4ffd0c43cCAS |

[35]  X. M. Luo, Z. F. Yang, M. C. He, C. M. Liu, Sorption of hydrophobic organic contaminants by natural organic matter in soils and sediments. Soils 2005, 37, 25.
| 1:CAS:528:DC%2BD2MXhtVyjs7bN&md5=036e4dc006fd2083e5643fc0b78e7725CAS |

[36]  W. J. Weber, W. Huang, A distributed reactivity model for sorption by soils and sediments: intraparticle heterogeneity and phase-distribution relationships under non-equilibrium conditions. Environ. Sci. Technol. 1996, 30, 881.
A distributed reactivity model for sorption by soils and sediments: intraparticle heterogeneity and phase-distribution relationships under non-equilibrium conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmslKnsw%3D%3D&md5=177c0db712fe2f9ec0744ff000b11569CAS |

[37]  B. Xing, J. J. Pignatello, B. Gigliotti, Competitive sorption between atrazine and other organic compounds in soils and model sorbents. Environ. Sci. Technol. 1996, 30, 2432.
Competitive sorption between atrazine and other organic compounds in soils and model sorbents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjslOisrs%3D&md5=6ad250b35fd4ed688b37d3d86505275dCAS |

[38]  J. J. Pignatello, B. Xing, Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 1996, 30, 1.
Mechanisms of slow sorption of organic chemicals to natural particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsFyrsr0%3D&md5=be38eb11c0e304fd0cf45318c8163aa5CAS |

[39]  X. K. Zhao, G. P. Yang, Y. J. Wang, Adsorption of dimethyl phthalate on marine sediments. Water Air Soil Pollut. 2004, 157, 179.
Adsorption of dimethyl phthalate on marine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFSmt7s%3D&md5=f55e86ceba7df432bc0ed556b7133eceCAS |

[40]  G. P. Yang, Z. B. Zhang, The stepwise exchange action and steric hindrance effect of organic phenols on clays in seawater. Chin. J. Oceanology Limnol. 1994, 12, 61.
The stepwise exchange action and steric hindrance effect of organic phenols on clays in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXms1arsrw%3D&md5=23687dbffce76a40853380c0b80e14e9CAS |

[41]  X. R. Xu, X. Y. Li, Sorption behavior of dibutyl phthalate on marine sediments. Mar. Pollut. Bull. 2008, 57, 403.
Sorption behavior of dibutyl phthalate on marine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlGmsLs%3D&md5=b61a6c88eda289f3cd5d2cdd19640a36CAS |

[42]  G. P. Yang, H. Y. Ding, X. Y. Cao, Q. Y. Ding, Sorption behavior of nonylphenol on marine sediments: effect of temperature, medium, sediment organic carbon and surfactant. Mar. Pollut. Bull. 2011, 62, 2362.
Sorption behavior of nonylphenol on marine sediments: effect of temperature, medium, sediment organic carbon and surfactant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGkurnM&md5=76fc4f683fedd3c27261b5a00615eba2CAS |

[43]  Z. Y. Wang, X. D. Yu, B. Pan, B. Xing, Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes. Environ. Sci. Technol. 2010, 44, 978.
Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SmsLfF&md5=12ceed74e09c092d3781b23942d0133bCAS |

[44]  L. Cox, M. C. Hermosín, J. Cornejo, Adsorption of methomyl by soils of southern Spain and soil components. Chemosphere 1993, 27, 837.
Adsorption of methomyl by soils of southern Spain and soil components.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1ClsL0%3D&md5=445e0f7d1008f25672362f0ae39da978CAS |

[45]  Q. H. Tao, H. X. Tang, Effect of dye compounds on the adsorption of atrazine by natural sediment. Chemosphere 2004, 56, 31.
Effect of dye compounds on the adsorption of atrazine by natural sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVWgur4%3D&md5=222563ce6de2fed67d7c6d5d34d3f9b9CAS |

[46]  X. K. Zhao, G. P. Yang, X. C. Gao, Studies on the sorption behaviors of nitrobenzene on marine sediments. Chemosphere 2003, 52, 917.
Studies on the sorption behaviors of nitrobenzene on marine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFekt74%3D&md5=fd481ea7cd3af42e7e2d7235e30aee47CAS |

[47]  X. M. Zhu, Thermal stability and thermal decomposition kinetics of ofloxacin. Chemical World 2008, 49, 333.
| 1:CAS:528:DC%2BD1cXptFWiu7o%3D&md5=b2f649040b7ef56350fa1ff63a84688cCAS |

[48]  M. D. Johnson, W. L. Huang, Z. Dang, W. J. Weber, A distributed reactivity model for sorption by soils and sediments. 12. Effects of subcritical water extraction and alterations of soil organic matter on sorption equilibria. Environ. Sci. Technol. 1999, 33, 1657.
A distributed reactivity model for sorption by soils and sediments. 12. Effects of subcritical water extraction and alterations of soil organic matter on sorption equilibria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFyitb0%3D&md5=c1848bc5e1e7ddbd54a6968ae71d5215CAS |

[49]  L. S. Lee, N. Carmosini, S. A. Sassman, H. M. Dion, M. S. Sepulveda, Agricultural contributions of antimicrobials and hormones on soil and water quality. Adv. Agron. 2007, 93, 1.
Agricultural contributions of antimicrobials and hormones on soil and water quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlyjsLo%3D&md5=86d2115b41e396024e803678fee49f8cCAS |

[50]  P. A. Siracuse, P. Somasundaran, Adsorption–desorption and hysteresis of sulfonates on kaolinite pH effects. J. Colloid Interface Sci. 1986, 114, 183.

[51]  A. Gürses, S. Karaca, Ç. Doğar, R. Bayraka, M. Açıkyıldıza, M. Yalçına, Determination of adsorptive properties of clay/water system: methylene blue sorption. J. Colloid Interface Sci. 2004, 269, 310.
Determination of adsorptive properties of clay/water system: methylene blue sorption.Crossref | GoogleScholarGoogle Scholar |

[52]  K. W. Goyne, J. Chrover, J. D. Kubicki, A. R. Zimmerman, S. L. Brantley, Sorption of the antibiotic ofloxacin to mesoporous and non-porous alumina and silica. J. Colloid Interface Sci. 2005, 283, 160.
Sorption of the antibiotic ofloxacin to mesoporous and non-porous alumina and silica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVaqsb8%3D&md5=71348c3972e132872d72c82d947d82dbCAS |

[53]  E. Tipping, D. Cooke, The effects of adsorbed humic substances on the surface charge of goethite (α-FeOOH) in freshwaters. Geochim. Cosmochim. Acta 1982, 46, 75.
The effects of adsorbed humic substances on the surface charge of goethite (α-FeOOH) in freshwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xhs12hu70%3D&md5=57141201eb9813eef4cfa1259975164bCAS |

[54]  M. Mazet, L. Angbo, B. Serpaud, Adsorption de substances humiques sur flocs d’hydroxyde d’aluminium préformés. Water Res. 1990, 24, 1509.
Adsorption de substances humiques sur flocs d’hydroxyde d’aluminium préformés.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkvFamtA%3D%3D&md5=05e6ae720aae68a22d1603eb65917abdCAS |

[55]  J. L. Conkle, C. Lattao, J. R. White, R. L. Cook, Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil. Chemosphere 2010, 80, 1353.
Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2hurnP&md5=89f27f461d154f2a94f61f53cedc6551CAS |

[56]  H. L. Pang, G. P. Yang, X. C. Gao, X. Y. Cao, Impacts of pH and surfactants on adsorption behaviors of norfloxacin on marine sediments. J. Environ. Sci. (China) 2012, 33, 129.
| 1:CAS:528:DC%2BC38XhslCmtrvM&md5=8c2ae64c2d80b8a97c581b28b93551daCAS |

[57]  M. S. Gasser, G. H. A. Morad, H. F. Aly, Batch kinetics and thermodynamics of chromium ions removal from waste solutions using synthetic adsorbents. J. Hazard. Mater. 2007, 142, 118.
Batch kinetics and thermodynamics of chromium ions removal from waste solutions using synthetic adsorbents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVejtrk%3D&md5=6dd5d31d36e17b8f74e938e76c9034e1CAS |

[58]  X. C. Fu, W. X. Shen, T. Y. Yao, Physical Chemistry 1990 (Higher Education Press: Beijing).

[59]  M. J. Jaycock, G. D. Parfitt, Chemistry of Interfaces 1981 (Ellis Horwood Limited Publishers: Chichester, UK)

[60]  B. von Oepen, W. Kördel, W. Klein, Sorption of non-polar and polar compounds to soils: processes, measurement and experience with the applicability of the modified OECD-Guideline106. Chemosphere 1991, 22, 285.
Sorption of non-polar and polar compounds to soils: processes, measurement and experience with the applicability of the modified OECD-Guideline106.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksVyhsLg%3D&md5=e54a45c816ac8235372d0d875d6a96fdCAS |

[61]  J. Q. Zhang, Y. H. Dong, Thermodynamics and kinetics of norfloxacin adsorption in typical soils of China. Acta Pedologica Sinic 2008, 45, 978.
| 1:CAS:528:DC%2BD1cXhsVWqurfP&md5=c101943666f9e61ba72564d9184ed79eCAS |

[62]  Y. H. Li, Z. C. Di, J. Ding, D. H. Wu, Z. K. Luan, Y. Q. Zhu, Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res. 2005, 39, 605.
Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFejs7c%3D&md5=9704f08802ff8b3ddfd0d25fb4a1255dCAS |

[63]  X. Y. Cao, H. L. Pang, G. P. Yang, Sorption behavior of norfloxacin on marine sediments. J. Soils Sediments 2015, 15, 1635.
Sorption behavior of norfloxacin on marine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXms1Gls7g%3D&md5=3539793ab7d25d866fdad6126d565ca8CAS |