Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Comparative evaluation of iron leach from different sources of fly ash under atmospherically relevant conditions

Jaya Borgatta A , Amanda Paskavitz A , Deborah Kim A and Juan G. Navea A B
+ Author Affiliations
- Author Affiliations

A Chemistry Department, Skidmore College, Saratoga Springs, NY 12866-1632, USA.

B Corresponding author. Email: jnavea@skidmore.edu

Environmental Chemistry 13(5) 902-912 https://doi.org/10.1071/EN16046
Submitted: 29 February 2016  Accepted: 30 May 2016   Published: 6 July 2016

Journal Compilation © CSIRO Publishing 2016 Open Access CC BY-NC-ND

Environmental context. Iron, a limiting nutrient of plankton in the ocean, is deposited to the sea from atmospheric aerosols. In particular, atmospheric acidic conditions promote dissolution of iron from fly ash, a by-product of coal-fired power plants. Here, we report that the iron leached from fly ash depends on its source region, and that the type of combustion process may influence the iron species mobilized.

Abstract. Fly ash, an iron-containing by-product of coal-fired power plants, has been observed in atmospheric aerosol plumes. Under the acidic atmospheric conditions resulting from the uptake of atmospheric gases, iron leached from fly ash can impact global biogeochemical cycles. However, the fly ash source region, as well as its generating power plant, plays an important role in the amount, speciation and lability of iron. Yet no comparative studies have been made on iron leached from fly ash from different sources. This study reports the iron mobilisation by proton-promoted dissolution from well-characterised fly ash samples from three distinctive locations: the USA Midwest, north-east India and Europe. In addition, pH dependency was also investigated. Proton-promoted dissolution showed a variability between source regions with a relative iron leach in the order USA Midwestern > north-east Indian > European ash. In addition, the initial rate of iron leach suggests that source region is indeed a determining factor in the iron leaching capacity of fly ash, because dissolution from Midwestern fly ash is also faster than both European and Indian ash. Finally, the combustion process of fly ash proved to be significant for the iron speciation, given that well-combusted fly ash samples leached mostly Fe3+ rather than bioavailable Fe2+. The role of fly ash should therefore be taken into account in order to better understand the effects of combustion particles in atmospheric iron deposition.

Additional keywords: aerosols, acidic processing, combustion particles, dissolution.


References

[1]  K. Ojha, N. C. Pradhan, A. N. Samanta, Zeolite from fly ash: synthesis and characterization. Bull. Mater. Sci. 2004, 27, 555.
Zeolite from fly ash: synthesis and characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1Cj&md5=ed1204968eb775ded10ed477e716682fCAS |

[2]  O. E. Manz, Worldwide production of coal ash and utilization in concrete and other products. Fuel 1997, 76, 691.
Worldwide production of coal ash and utilization in concrete and other products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkt1ejs70%3D&md5=7739caed997c8ebe6d07446616563497CAS |

[3]  2013 Coal Combustion Product (CCP) Production & Use Survey Report 2014 (American Coal Ash Association: Aurora, CO).

[4]  E. Haque, Indian fly-ash: production and consumption scenario. International Journal of Waste Resources 2013, 3, 22.
Indian fly-ash: production and consumption scenario.Crossref | GoogleScholarGoogle Scholar |

[5]  H. J. Feuerborn, in Coal Combustion Products in Europe – An Update on Production and Utilisation Standardization and Regulation, World of Coal Conference, Denver, CO, 9–12 May 2011.

[6]  X. P. Cai, S. Q. Zhang, J. G. Li, in Proceedings of the 2015 International Conference on Water Resources and Environment 2015, pp. 35–37 (CRC Press: Beijing).

[7]  V. Ramanathan, P. J. Crutzen, J. T. Kiehl, D. Rosenfeld, Aersols, climate and the hydrological cycle. Science 2001, 294, 2119.
Aersols, climate and the hydrological cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVOnur8%3D&md5=090b1554aefaaac4b1d5582f952daedeCAS | 11739947PubMed |

[8]  J. Inoue, A. Momose, T. Okudaria, A. Murakami-Kitase, H. Yamazaki, S. Yoshikawa, Chemical characteristics of north-east Asian fly ash particles: implications for their long-range transportation. Atmos. Environ. 2014, 95, 375.
Chemical characteristics of north-east Asian fly ash particles: implications for their long-range transportation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1CnsrvF&md5=feb127bcc4d229055eb20fdf77a17377CAS |

[9]  P. Nowinski, V. F. Hodge, S. Gerstenberger, Application of field portable X-ray fluorescence to the analysis of desert varnish samples in areas affected by coal-fired power plants. Environ. Chem. 2012, 9, 379.
Application of field portable X-ray fluorescence to the analysis of desert varnish samples in areas affected by coal-fired power plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ajsb%2FO&md5=ea23a9b62be9c55334d31f9f85b65905CAS |

[10]  M. O. Andreae, P. J. Crutzen, Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science 1997, 276, 1052.
Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjt12ls7g%3D&md5=ef8cb201599f8407f259725c29415cf3CAS |

[11]  W. Li, L. Shao, Transmission electron microscopy study of aerosol particles from the brown hazes in northern China. Journal of Geophysical Research: Atmospheres 2009, 114(D9), D09302.
Transmission electron microscopy study of aerosol particles from the brown hazes in northern China.Crossref | GoogleScholarGoogle Scholar |

[12]  S. F. Mueller, J. W. Mallard, Q. Mao, S. L. Shaw, Fugitive particulate emissions from a dry coal fly ash disposal. J. Air Waste Manag. Assoc. 2013, 63, 806.
Fugitive particulate emissions from a dry coal fly ash disposal.Crossref | GoogleScholarGoogle Scholar | 23926850PubMed |

[13]  H. Chen, A. Laskin, J. Baltrusaitis, C. A. Gorski, M. M. Scherer, V. H. Grassian, Coal fly ash as a source of iron in atmospheric dust. Environ. Sci. Technol. 2012, 46, 2112.
Coal fly ash as a source of iron in atmospheric dust.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFynsw%3D%3D&md5=9d85daf29451114ad02105e931b17e4bCAS | 22260270PubMed |

[14]  B. G. Kutchko, A. G. Kim, Fly ash characterization by SEM-EDS. Fuel 2006, 85, 2537.
Fly ash characterization by SEM-EDS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFGitr0%3D&md5=7305a4020ba9adb6041c4cd3d42782d3CAS |

[15]  C. Luo, N. Mahowald, T. Bond, P. Y. Chuan, J. Schauer, Combustion iron distribution and deposition. Global Biogeochem. Cycles 2008, 22, GB1012.
Combustion iron distribution and deposition.Crossref | GoogleScholarGoogle Scholar |

[16]  R. A. Duce, N. W. Tindale, Atmospheric transport of iron and its deposition in the ocean. Limnology and Oceanography 1991, 36, 1715.
Atmospheric transport of iron and its deposition in the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktFeqtrk%3D&md5=bdb9e6653ac2c9413810e1bbe83ee311CAS |

[17]  S. Fan, W. J. Moxim, H. Levy, Aeolian input of bioavailable iron to the ocean. Geophys. Res. Lett. 2006, 33, L07602.

[18]  I. Y. Fung, S. K. Meyn, I. Tegen, S. C. Doney, J. G. John, J. K. B. Bishop, Iron supply and demands in the upper ocean. Global Biogeochem. Cycles 2000, 14, 281.
Iron supply and demands in the upper ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVGmsrc%3D&md5=5fdc3f75bef22937cd48df1c56cb19e0CAS |

[19]  J. H. Martin, S. E. Fitzwater, Iron deficiency limits phytoplankton growth in the north-east Pacific Subarctic. Nature 1988, 331, 341.
Iron deficiency limits phytoplankton growth in the north-east Pacific Subarctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsVKrtbk%3D&md5=af2f64d796e054540ba7f745d07c12dcCAS |

[20]  S. Bonnet, C. Guieu, Dissolution of atmospheric iron in seawater. Geophys. Res. Lett. 2004, 31, L03303.

[21]  P. W. Boyd, A. J. Watson, C. S. Law, E. R. Abraham, T. Trull, R. Murdoch, D. C. E. Bakker, A. R. Bowie, K. O. Buesseler, H. Chang, M. Charette, P. Croot, K. Downing, R. Frew, M. Gall, M. Hadfield, J. Hall, M. Harvey, G. Jameson, J. LaRoche, M. Liddicoat, R. Ling, M. T. Maldonado, M. R. McKay, S. Nodder, S. Pickmere, R. Pridmore, S. Rintoul, K. Safi, P. Sutton, R. Strzepek, K. Tanneberger, S. Turner, A. Waite, J. Zeldis, A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 2000, 407, 695.
A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsFShtbk%3D&md5=f98c0c1c2cb3d49c0722c3ca64f9e75fCAS | 11048709PubMed |

[22]  U. Riebesell, D. A. Wolf-Gladrow, V. Smetacek, Carbon dioxide limitation of marine phytoplankton growth rates. Nature 1993, 361, 249.
Carbon dioxide limitation of marine phytoplankton growth rates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhs1Cqurc%3D&md5=df1d56ae1a31bf822f116e5c4d9aeb91CAS |

[23]  R. Lal, Carbon sequestration. Phil. Trans. R. Soc. B 2008, 363, 815.
Carbon sequestration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislGgtbw%3D&md5=43d6ce9ee257ffdb13e693d803b273f7CAS | 17761468PubMed |

[24]  K. V. Desboeufs, A. Sofitkitis, R. Losno, L. Colin, P. Ausset, Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate metal. Chemosphere 2005, 58, 195.
Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate metal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVahu7rO&md5=b89a81de835e36cf500454a11538f3c7CAS | 15571751PubMed |

[25]  H. Chen, V. H. Grassian, Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids. Environ. Sci. Technol. 2013, 47, 10312.
| 1:CAS:528:DC%2BC3sXhtFKlsLrF&md5=f271098c83b6aa2734c2603ed4065062CAS | 23883276PubMed |

[26]  G. Rubasinghege, L. W. Robert, S. M. Michelle, V. H. Grassian, Simulated atmospheric processing of iron oxyhydroxide minerals at low pH: roles of particle size and acid anion in iron dissolution. Proc. Natl. Acad. Sci. USA 2010, 107, 6628.
Simulated atmospheric processing of iron oxyhydroxide minerals at low pH: roles of particle size and acid anion in iron dissolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFSjsL8%3D&md5=abf28976f925cd5cead420be829774f9CAS | 20360560PubMed |

[27]  L. Morawska, J. Zhang, Combustion sources of particles. 1. Health relevance and source signatures. Chemosphere 2002, 49, 1045.
Combustion sources of particles. 1. Health relevance and source signatures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotlynurk%3D&md5=2bc9480c88a4b624565c56a8f1ed59a7CAS | 12492164PubMed |

[28]  D. Cwiertny, J. Baltrusaitis, G. Hunter, A. Laskin, M. M. Scherer, V. H. Grassian, Characterization and acid-mobilization study of iron-containing mineral dust source materials. J. Geophys. Res. 2008, 113, D05202.
Characterization and acid-mobilization study of iron-containing mineral dust source materials.Crossref | GoogleScholarGoogle Scholar |

[29]  A. Iwashita, T. Nakajima, H. Takanashi, A. Ohki, Y. Fujita, T. Yamashita, Determination of trace elements in coal and coal fly ash by joint-use of ICP-AES and atomic absorption spectrometry. Talanta 2007, 71, 251.
Determination of trace elements in coal and coal fly ash by joint-use of ICP-AES and atomic absorption spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFCjsA%3D%3D&md5=974dcd2f2b33dafdf79fbac33d186c75CAS | 19071296PubMed |

[30]  W. C. Keene, R. Sander, A. A. P. Pszenny, R. Vogt, P. J. Crutzen, J. N. Galloway, Aerosol pH in the marine boundary layer: a review and model evaluation. J. Aerosol Sci. 1998, 29, 339.
Aerosol pH in the marine boundary layer: a review and model evaluation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis1aqsLk%3D&md5=13d60765711fb270434f2be640c470cfCAS |

[31]  J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change 2006 (Wiley: Hoboken, NJ).

[32]  D. C. Harris, Exploring Chemical Analysis, 2nd edn 1997 (WH Freeman and Company: New York, NY).

[33]  W. Stumm, G. F. Lee, Oxygenation of ferrous iron. Ind. Eng. Chem. 1961, 53, 143.
Oxygenation of ferrous iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXnslymsQ%3D%3D&md5=e522264cd002565adcecb905eb3d5af1CAS |

[34]  W. B. Fortune, M. G. Mellon, Determination of iron with o-phenanthroline: a spectrophotometric study. Ind. Eng. Chem. 1938, 10, 60.
| 1:CAS:528:DyaA1cXhslerug%3D%3D&md5=f6d2b7fb731e75b73b5389f6f70564f8CAS |

[35]  A. R. Baker, T. D. Jickells, Mineral particle size as a control on aerosol iron solubility. Geophys. Res. Lett. 2006, 33, L17608.
Mineral particle size as a control on aerosol iron solubility.Crossref | GoogleScholarGoogle Scholar |

[36]  J. Heintzenberg, Properties of the log-normal particle size distribution. Aerosol Sci. Technol. 1994, 21, 46.
Properties of the log-normal particle size distribution.Crossref | GoogleScholarGoogle Scholar |

[37]  O. Laskina, H. S. Morris, J. R. Grandquist, Z. Qin, E. A. Stone, A. V. Tivanski, V. H. Grassian, Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles. J. Phys. Chem. A 2015, 119, 4489.
Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFehs73O&md5=45eae1800652ab0c5e38e4d8ed32924bCAS | 25521409PubMed |

[38]  J. W. Mauchly, Significance test for sphericity of a normal n-variate distribution. Ann. Math. Stat. 1940, 11, 204.
Significance test for sphericity of a normal n-variate distribution.Crossref | GoogleScholarGoogle Scholar |

[39]  J. D. Schuttlefield, D. Cox, V. H. Grassian, An investigation of water uptake on clay minerals using ATR-FTIR spectroscopy coupled with quartz crystal microbalance measurements. J. Geophys. Res., D, Atmospheres 2007, 112, D21303.
An investigation of water uptake on clay minerals using ATR-FTIR spectroscopy coupled with quartz crystal microbalance measurements.Crossref | GoogleScholarGoogle Scholar |

[40]  J. Baltrusaitis, C. Usher, V. H. Grassian, Reactions of sulfur dioxide on calcium carbonate single-crystal and particle surfaces at the adsorbed water–carbonate interface. Phys. Chem. Chem. Phys. 2007, 9, 3011.
Reactions of sulfur dioxide on calcium carbonate single-crystal and particle surfaces at the adsorbed water–carbonate interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVylsbk%3D&md5=82f9f2fdbe699dcac6d7105fb641b0a9CAS | 17551626PubMed |

[41]  L. Ferretto, A. Glisenti, Study of the surface acidity of an hematite powder. J. Mol. Catal. Chem. 2002, 187, 119.
Study of the surface acidity of an hematite powder.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVWiu74%3D&md5=0386c29e3c35c0db797a7dd8b0288d53CAS |

[42]  H. D. Lutz, H. Möller, M. Schmidt, Lattice vibration spectra. Part LXXXII. Brucite-type hydroxides M(OH)2 (M = Ca, Mn, Co, Fe, Cd) – IR and Raman spectra, neutron diffraction of Fe(OH)2. J. Mol. Struct. 1994, 328, 121.
Lattice vibration spectra. Part LXXXII. Brucite-type hydroxides M(OH)2 (M = Ca, Mn, Co, Fe, Cd) – IR and Raman spectra, neutron diffraction of Fe(OH)2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisFehsLk%3D&md5=60145ae890de99ccf5b80ddbdbcb32cfCAS |

[43]  K. L. Konan, C. Peyratout, J.-P. Bonnet, A. Smith, A. Jacquet, P. Magnoux, P. Ayrault, Surface properties of kaolin and illite suspensions in concentrated calcium hydroxide medium. J. Colloid Interface Sci. 2007, 307, 101.
Surface properties of kaolin and illite suspensions in concentrated calcium hydroxide medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWjsLY%3D&md5=6f54f4eff01026537ba4f441267345b9CAS | 17174321PubMed |

[44]  S. C. White, E. D. Case, Characterization of fly ash from coal-fired power plants. J. Mater. Sci. 1990, 25, 5215.
Characterization of fly ash from coal-fired power plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXivFGksg%3D%3D&md5=abcee40e0031a2b1942a4d784e73fe1cCAS |

[45]  J. Tomeczek, H. Palugniok, Kinetics of mineral matter transformation during coal combustion. Fuel 2002, 81, 1251.
Kinetics of mineral matter transformation during coal combustion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtlGitrw%3D&md5=acff3ef4b7736873c007c3d1007545c1CAS |

[46]  S. Srinivasachar, J. J. Helble, A. A. Boni, Mineral behaviour during coal combustion 1. Pyrite transformations. Pror. Energy Combust. Sci. 1990, 16, 281.
Mineral behaviour during coal combustion 1. Pyrite transformations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitFSgsL4%3D&md5=600e97b476bacdb6eea788a8177b94b3CAS |

[47]  B. Zinder, G. Furrer, S. Werner, The coordination chemistry of weathering: II. Dissolution of FeIII oxides. Geochim. Cosmochim. Acta 1986, 50, 1861.
The coordination chemistry of weathering: II. Dissolution of FeIII oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlslKjtb8%3D&md5=7479789fc62f425fcfe56f8f47cbad89CAS |

[48]  D. M. B. Lesko, E. M. Coddens, H. D. Swomley, R. M. Welch, J. Borgatta, J. G. Navea, Photochemistry of nitrate chemisorbed on various metal oxide surfaces. Phys. Chem. Chem. Phys. 2015, 17, 20775.
Photochemistry of nitrate chemisorbed on various metal oxide surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Sqt7zI&md5=092fd2d4b887084d5761b87a359f57c3CAS |

[49]  C. K. Remucal, D. L. Sedlak, The role of iron coordination in the production of reactive oxidants from ferrous iron oxidation by oxygen and hydrogen peroxide, in Aquatic Redox Chemistry (Ed. Paul G. Tratnyek, Timothy J. Grundl, Stefan B. Haderlein) 2011, Vol. 1071, p. 177 (American Chemical Society: Washington, DC).

[50]  B. Srinivas, M. M. Sarin, A. Kumar, Impact of anthropogenic sources on aerosol iron solubility over the Bay of Bengal and the Arabian Sea. Biogeochemistry 2012, 110, 257.
Impact of anthropogenic sources on aerosol iron solubility over the Bay of Bengal and the Arabian Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjt7bM&md5=32b863ede2c1a8597099aa87d34e1edeCAS |

[51]  C. R. Usher, A. E. Michel, V. H. Grassian, Reactions on mineral dust. Chem. Rev. 2003, 103, 4883.
Reactions on mineral dust.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVOjtbk%3D&md5=a9759c1b20d5eb76d1fb8dd9e9a76549CAS | 14664636PubMed |

[52]  J. Borgatta, G. Navea, Fate of aqueous iron leached from tropospheric aerosols during atmospheric acidic processing: study of the effects of humic-like substances. WIT Transactions of Ecology and the Environment 2015, 198, 155.
Fate of aqueous iron leached from tropospheric aerosols during atmospheric acidic processing: study of the effects of humic-like substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xos1SltLs%3D&md5=2f05bb468808803a37d39d3603207d6fCAS |

[53]  H. A. Al-Abadleh, Review of the bulk and surface chemistry of iron in atmospherically relevant systems containing humic-like substances. RSC Adv. 2015, 5, 45785.
Review of the bulk and surface chemistry of iron in atmospherically relevant systems containing humic-like substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnslOqtL4%3D&md5=3deac88b67c6938e6e65675182e8a1acCAS |

[54]  J. G. Navea, H. Chen, M. Huang, G. R. Carmichel, V. H. Grassian, A comparative evaluation of water uptake on several mineral dust sources. Environ. Chem. 2010, 7, 162.
A comparative evaluation of water uptake on several mineral dust sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFeltbs%3D&md5=708ff263ca3dbcdcd83748bd5d841f2dCAS |

[55]  J. Madejová, P. Komadel, Baseline studies of the clay minerals society source clays: infrared methods. Clays Clay Miner. 2001, 49, 410.
Baseline studies of the clay minerals society source clays: infrared methods.Crossref | GoogleScholarGoogle Scholar |

[56]  H. Namduri, S. Nasrazadi, Quantitative analysis of iron oxides using Fourier-transform infrared. Corros. Sci. 2008, 50, 2493.
Quantitative analysis of iron oxides using Fourier-transform infrared.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFersr3I&md5=993f50bbede3de790c4143777074fcfdCAS |