Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Spatiotemporal redox dynamics in a freshwater lake sediment under alternating oxygen availabilities: combined analyses of dissolved and particulate electron acceptors

Maximilian P. Lau A B D , Michael Sander C , Jörg Gelbrecht A and Michael Hupfer A
+ Author Affiliations
- Author Affiliations

A Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Chemical Analytics and Biogeochemistry, Mueggelseedamm 301, D-12587 Berlin, Germany.

B Universität Greifswald, Institut für Biochemie, Felix-Hausdorff-Straße 4, D-17487 Greifswald, Germany.

C Swiss Federal Institute of Technology (ETH) Zurich, Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, CH-8092 Zurich, Switzerland.

D Corresponding author. Email: lau@igb-berlin.de

Environmental Chemistry 13(5) 826-837 https://doi.org/10.1071/EN15217
Submitted: 19 October 2015  Accepted: 28 February 2016   Published: 7 April 2016

Environmental context. At sediment surfaces, the availability of oxygen is controlled by its downward transport from the water surface and its consumption in microbial metabolism. Microorganisms can also consume substances other than oxygen to dispose of the surplus charge that is generated during microbial metabolism. We investigate the complex dynamics of these other substances when the oxygen availability fluctuates, and thereby contribute to the mechanistic understanding of oxygen-consuming processes in aquatic environments.

Abstract. Benthic mineralisation in lakes largely controls the availability of oxygen in the water column above the sediment. In stratified lakes with anoxic hypolimnetic waters, mineralisation proceeds by anaerobic respiration using terminal electron acceptors (TEAs) other than O2. In past work, hypolimnetic oxygen consumption has been estimated from vertical concentration profiles of redox-active dissolved species in the water column and the underlying sediment. Electron transfer to and from particulate mineral and organic phases in the sediments was, however, not accounted for, mainly because of methodological constraints. In this work we use an electrochemical approach, mediated electrochemical analysis, to directly quantify changes in the redox states of particulate geochemical phases in a lake sediment. In mesocosm incubations, sediments were subjected to shifting oxygen availability similar to conditions during and after lake overturn events. The temporal redox dynamics of both dissolved and particulate phases in sediments were monitored at a high spatial resolution. We used a combination of experimental and modelling approaches to couple the observed changes in the redox state of dissolved and particulate species in the sediment to the oxygen turnover in the overlying water column. For the studied freshwater sediment, the amount of O2 consumed during the re-oxidation of these phases in the top 21 mm of the sediment after switching from hypoxic to oxic conditions corresponded to ~50 % of the total sediment oxygen consumption that was estimated from in-lake measurements after the onset of summer stratification. We found that solid phases in the sediments play a more profound role in electron accepting processes than previously considered. Based on these results, we propose that the herein presented analytical method offers the possibility to constrain parameters in theoretical models that simulate benthic redox dynamics including the electron transfer to and from geochemical phases in the sediments.


References

[1]  G. E. Hutchinson, Limnological studies in Connecticut: IV. The mechanisms of intermediary metabolism in stratified lakes. Ecol. Monogr. 1941, 11, 21.
Limnological studies in Connecticut: IV. The mechanisms of intermediary metabolism in stratified lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH3MXit12gtA%3D%3D&md5=5e670088b722dbe1815f6feb81bffa49CAS |

[2]  D. M. Livingstone, Lake oxygenation: application of a one-box model with ice cover. Int. Rev. Gesamten Hydrobiol. Hydrograph. 1993, 78, 465.
Lake oxygenation: application of a one-box model with ice cover.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFams70%3D&md5=b638b43795a45b3921037c7384893f26CAS |

[3]  D. M. Livingstone, D. M. Imboden, The prediction of hypolimnetic oxygen profiles: a plea for a deductive approach. Can. J. Fish. Aquat. Sci. 1996, 53, 924.
The prediction of hypolimnetic oxygen profiles: a plea for a deductive approach.Crossref | GoogleScholarGoogle Scholar |

[4]  M. Hondzo, T. Feyaerts, R. Donovan, B. L. O’Connor, Universal scaling of dissolved oxygen distribution at the sediment-water interface: a power law. Limnol. Oceanogr. 2005, 50, 1667.
Universal scaling of dissolved oxygen distribution at the sediment-water interface: a power law.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCrsrfP&md5=2fa8e5d6a1ebcf01f5c03dd73e490b5aCAS |

[5]  P. Berg, R. N. Glud, A. Hume, H. Stahl, K. Oguri, V. Meyer, H. Kitazato, Eddy correlation measurements of oxygen uptake in deep ocean sediments. Limnol. Oceanogr. Methods 2009, 7, 576.
Eddy correlation measurements of oxygen uptake in deep ocean sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WjtrfM&md5=277bb56a9e66ffbe0766b22f20efec68CAS |

[6]  L. D. Bryant, C. Lorrai, D. McGinnis, A. Brand, A. Wüest, J. C. Little, Variable sediment oxygen uptake in response to dynamic forcing. Limnol. Oceanogr. 2010, 55, 950.
Variable sediment oxygen uptake in response to dynamic forcing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yjsbbN&md5=e844762d6e2dc2b8a677e1e372c02e37CAS |

[7]  A. Matzinger, B. Müller, P. Niederhauser, M. Schmid, Hypolimnetic oxygen consumption by sediment-based reduced substances in former eutrophic lakes. Limnol. Oceanogr. 2010, 55, 2073.
Hypolimnetic oxygen consumption by sediment-based reduced substances in former eutrophic lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Ggsb%2FO&md5=cf13272e5e597a24bc76f2dcbf2a6336CAS |

[8]  J. P. Megonigal, M. E. Hines, P. T. Visscher, 8.08 – Anaerobic metabolism: linkages to trace gases and aerobic processes, in Treatise on Geochemistry (Eds H. D. Holland, K. K. Turekian) 2003, pp. 317–424 (Pergamon: Oxford, UK), http://dx.doi.org/10.1016/B0-08-043751-6/08132-9

[9]  J.-P. R. Sweerts, M. Baer-Gilissen, A. A. Cornelese, T. E. Cappenberg, Oxygen-consuming processes at the profundal and littoral sediment-water interface of a small meso-eutrophic lake (Lake Vechten, The Netherlands). Limnol. Oceanogr. 1991, 36, 1124.
Oxygen-consuming processes at the profundal and littoral sediment-water interface of a small meso-eutrophic lake (Lake Vechten, The Netherlands).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtFeitrw%3D&md5=6aa0a204555cb496b0d992b0c91ba796CAS |

[10]  M. Maerki, B. Muller, C. Dinkel, B. Wehrli, Mineralization pathways in lake sediments with different oxygen and organic carbon supply. Limnol. Oceanogr. 2009, 54, 428.
Mineralization pathways in lake sediments with different oxygen and organic carbon supply.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCrtr%2FJ&md5=170c0eb06241d9d2c8eaf545de5ecd72CAS |

[11]  B. Müller, L. D. Bryant, A. Matzinger, A. Wüest, Hypolimnetic oxygen depletion in eutrophic lakes. Environ. Sci. Technol. 2012, 46, 9964.
| 22871037PubMed |

[12]  Y. Wang, P. Van Cappellen, A multicomponent reactive transport model of early diagenesis: application to redox cycling in coastal marine sediments. Geochim. Cosmochim. Acta 1996, 60, 2993.
A multicomponent reactive transport model of early diagenesis: application to redox cycling in coastal marine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvVSksb8%3D&md5=10a82fd08127d559be09bb4e2475388bCAS |

[13]  P. Berg, S. Rysgaard, B. Thamdrup, Dynamic modeling of early diagenesis and nutrient cycling. A case study in an artic marine sediment. Am. J. Sci. 2003, 303, 905.
Dynamic modeling of early diagenesis and nutrient cycling. A case study in an artic marine sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVOktrc%3D&md5=77bd1bc38b83b286a70aae4f13a2de79CAS |

[14]  D. W. Paraska, M. R. Hipsey, S. U. Salmon, Sediment diagenesis models: review of approaches, challenges and opportunities. Environ. Model. Softw. 2014, 61, 297.
Sediment diagenesis models: review of approaches, challenges and opportunities.Crossref | GoogleScholarGoogle Scholar |

[15]  D. R. Lovley, J. D. Coates, E. L. Blunt-Harris, E. J. Phillips, J. C. Woodward, Humic substances as electron acceptors for microbial respiration. Nature 1996, 382, 445.
Humic substances as electron acceptors for microbial respiration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks1Olurw%3D&md5=4fcfe32dca6f9d6bae10ca07bfc75d0cCAS |

[16]  D. T. Scott, D. M. McKnight, E. L. Blunt-Harris, S. E. Kolesar, D. R. Lovley, Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 1998, 32, 2984.
Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVKmurs%3D&md5=21f5ae199b3b5392710ec1e220577233CAS |

[17]  B. Thamdrup, Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol. 2000, 16, 41.
Bacterial manganese and iron reduction in aquatic sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1Wluw%3D%3D&md5=0ebfbc99da2272ec1e5c0af4f4e4684cCAS |

[18]  A. Kappler, M. Benz, B. Schink, A. Brune, Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol. Ecol. 2004, 47, 85.
Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVynug%3D%3D&md5=6b7a19ba02371c71308dbd11d11cf034CAS | 19712349PubMed |

[19]  T. Peretyazhko, G. Sposito, Reducing capacity of terrestrial humic acids. Geoderma 2006, 137, 140.
Reducing capacity of terrestrial humic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlals7bJ&md5=dfe941b94ad7c7375f615a7f16dcb83cCAS |

[20]  M. Bauer, T. Heitmann, D. L. Macalady, C. Blodau, Electron transfer capacities and reaction kinetics of peat dissolved organic matter. Environ. Sci. Technol. 2007, 41, 139.
Electron transfer capacities and reaction kinetics of peat dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cgu7jF&md5=c3ed8b606a6f0bfde0b4333b42b640fbCAS | 17265939PubMed |

[21]  E. D. Melton, E. D. Swanner, S. Behrens, C. Schmidt, A. Kappler, The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat. Rev. Microbiol. 2014, 12, 797.
The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslOktL%2FF&md5=5742721484101b4004483ea1bee72670CAS | 25329406PubMed |

[22]  J. E. Kostka, E. Haefele, R. Viehweger, J. W. Stucki, Respiration and dissolution of iron(III)-containing clay minerals by bacteria. Environ. Sci. Technol. 1999, 33, 3127.
Respiration and dissolution of iron(III)-containing clay minerals by bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvF2ktLk%3D&md5=df4c1fe9fe4f4c96877237ca7050bf55CAS |

[23]  R. S. Cutting, V. S. Coker, J. W. Fellowes, J. R. Lloyd, D. J. Vaughan, Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. Geochim. Cosmochim. Acta 2009, 73, 4004.
Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVynsLs%3D&md5=c07ef247c30a9db7c6f17702d1eced58CAS |

[24]  A. Kleeberg, Interactions between benthic phosphorus release and sulfur cycling in Lake Scharmützelsee (Germany), in The Interactions Between Sediments and Water (Eds R. D. Evans, J. Wisniewski, J. R. Wisniewski) 1997, pp. 391–399 (Springer: Dordrecht, Netherlands).

[25]  M. Aeschbacher, M. Sander, R. P. Schwarzenbach, Novel electrochemical approach to assess the redox properties of humic substances. Environ. Sci. Technol. 2010, 44, 87.
Novel electrochemical approach to assess the redox properties of humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFShsrnM&md5=24d0c7b7517cd9ec86dfcebddf26da50CAS | 19950897PubMed |

[26]  M. Aeschbacher, D. Vergari, R. P. Schwarzenbach, M. Sander, Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids. Environ. Sci. Technol. 2011, 45, 8385.
Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWmu7zJ&md5=7804fe631ce1c743eaea567fd632f6e5CAS | 21823669PubMed |

[27]  L. Klüpfel, A. Piepenbrock, A. Kappler, M. Sander, Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci. 2014, 7, 195.
Humic substances as fully regenerable electron acceptors in recurrently anoxic environments.Crossref | GoogleScholarGoogle Scholar |

[28]  J. K. Keller, K. K. Takagi, Solid-phase organic matter reduction regulates anaerobic decomposition in bog soil. Ecosphere 2013, 4, art54.
Solid-phase organic matter reduction regulates anaerobic decomposition in bog soil.Crossref | GoogleScholarGoogle Scholar |

[29]  T. Heitmann, T. Goldhammer, J. Beer, C. Blodau, Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern bog. Glob. Change Biol. 2007, 13, 1771.
Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern bog.Crossref | GoogleScholarGoogle Scholar |

[30]  M. P. Lau, M. Sander, J. Gelbrecht, M. Hupfer, Solid phases as important electron acceptors in freshwater organic sediments. Biogeochemistry 2015, 123, 49.
Solid phases as important electron acceptors in freshwater organic sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslGmsg%3D%3D&md5=aa9052a7490867bbeab6c26687b5212dCAS |

[31]  B. Grüneberg, J. Rücker, B. Nixdorf, H. Behrendt, Dilemma of Non-steady state in lakes – development and predictability of in-lake P concentration in dimictic Lake Scharmützelsee (Germany) after abrupt load reduction. Int. Rev. Hydrobiol. 2011, 96, 599.
Dilemma of Non-steady state in lakes – development and predictability of in-lake P concentration in dimictic Lake Scharmützelsee (Germany) after abrupt load reduction.Crossref | GoogleScholarGoogle Scholar |

[32]  M. Aeschbacher, C. Graf, R. P. Schwarzenbach, M. Sander, Antioxidant properties of humic substances. Environ. Sci. Technol. 2012, 46, 4916.
Antioxidant properties of humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVent78%3D&md5=491ac828a2a9293ec2aae775d4a32f05CAS | 22463073PubMed |

[33]  C. A. Gorski, L. Klüpfel, A. Voegelin, M. Sander, T. B. Hofstetter, Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1. Environ. Sci. Technol. 2012, 46, 9369.
Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVyns7zP&md5=fc855ee1d2947fe99d73c221e6273575CAS | 22827558PubMed |

[34]  L. Klüpfel, M. Keiluweit, M. Kleber, M. Sander, Redox properties of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2014, 48, 5601.
Redox properties of plant biomass-derived black carbon (biochar).Crossref | GoogleScholarGoogle Scholar | 24749810PubMed |

[35]  B. Rippey, C. McSorley, Oxygen depletion in Lake Hypolimnia. Limnol. Oceanogr. 2009, 54, 905.
Oxygen depletion in Lake Hypolimnia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCrtrbN&md5=fcf6e5ed410798a07533ce4a594ca930CAS |

[36]  A. Kleeberg, Phosphorus sedimentation in seasonal anoxic Lake Scharmützel, NE Germany. Hydrobiologia 2002, 472, 53.
Phosphorus sedimentation in seasonal anoxic Lake Scharmützel, NE Germany.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1ykt70%3D&md5=b91d9f63ef4799d0bea4ee0ea4b0fe5cCAS |

[37]  L. Anderson, Simultaneous spectrophotometric determination of nitrite and nitrate by flow injection analysis. Anal. Chim. Acta 1979, 110, 123.
Simultaneous spectrophotometric determination of nitrite and nitrate by flow injection analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXpvFehsw%3D%3D&md5=eac9b2572b8e8d07e0cdf1b18240254fCAS |

[38]  J. D. Cline, F. A. Richards, Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature and pH. Environ. Sci. Technol. 1969, 3, 838.
Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature and pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXkslertbo%3D&md5=b2280de0ca02cdb2bd062b78f68e6444CAS |

[39]  J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, H. Dong, T. C. Onstott, N. W. Hinman, Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta 1998, 62, 3239.
Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlGlsLw%3D&md5=d952c5e3304fc9610837ebc6b20307a7CAS |

[40]  H. Tamura, K. Goto, T. Yotsuyanagi, M. Nagayama, Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta 1974, 21, 314.
Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXksVCqsbY%3D&md5=01911de0b0039bdd8587a03216e279b7CAS | 18961462PubMed |

[41]  K. L. Straub, M. Benz, B. Schink, Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol. Ecol. 2001, 34, 181.
Iron metabolism in anoxic environments at near neutral pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1Ghtbg%3D&md5=16830ac5f3551f70c97cfb12be0ea2a0CAS | 11137597PubMed |

[42]  D. E. LaRowe, P. Van Cappellen, Degradation of natural organic matter: A thermodynamic analysis. Geochim. Cosmochim. Acta 2011, 75, 2030.
Degradation of natural organic matter: A thermodynamic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVGhu78%3D&md5=67351f0749be917a668263e8369203dcCAS |

[43]  G. Hulthe, S. Hulth, P. O. J. Hall, Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochim. Cosmochim. Acta 1998, 62, 1319.
Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktVynurw%3D&md5=114656d5680af7ca0638382b85e7b2c6CAS |

[44]  J. T. Huttunen, T. S. Väisänen, S. K. Hellsten, P. J. Martikainen, Methane fluxes at the sediment-water interface in some boreal lakes and reservoirs. Boreal Environ. Res. 2006, 11, 27.
| 1:CAS:528:DC%2BD28XislSgsrg%3D&md5=379703ffe8d02a9d0f52bed739db6e0bCAS |

[45]  C. A. Gorski, L. E. Klüpfel, A. Voegelin, M. Sander, T. B. Hofstetter, Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties. Environ. Sci. Technol. 2013, 47, 13477.
Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKks73E&md5=c707c5e898c2953b3f59ddd7e160e77fCAS | 24219773PubMed |

[46]  S. Orsetti, C. Laskov, S. B. Haderlein, Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)-goethite surface from AQDS speciation. Environ. Sci. Technol. 2013, 47, 14161.
Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)-goethite surface from AQDS speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslyqt7rL&md5=1065f3358df64773f64454b9c5796e4dCAS | 24266388PubMed |

[47]  H. Yao, R. Conrad, R. Wassmann, H. Neue, Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry 1999, 47, 269.
Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt1CltLs%3D&md5=7ec897f61244b3d7ee447560169431e5CAS |

[48]  K. Porsch, A. Kappler, FeII oxidation by molecular O2 during HCl extraction. Environ. Chem. 2011, 8, 190.
FeII oxidation by molecular O2 during HCl extraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1yisrg%3D&md5=434357fc34a783956390c333a55ffe1dCAS |

[49]  C. Kelly, J. W. Rudd, D. Schindler, Carbon and electron flow via methanogenesis, SO42–, NO3–, Fe3+, and Mn4+ reduction in the anoxic hypolimnia of three lakes. Arch. Hydrobiol. 1988, 31, 333.
| 1:CAS:528:DyaL1cXmtFGmsb4%3D&md5=26dcaf2f12de33b4965659d507f891f3CAS |

[50]  D. A. Matthews, S. W. Effler, C. T. Driscoll, S. M. O’Donnell, C. M. Matthews, Electron budgets for the hypolimnion of a recovering urban lake, 1989–2004: response to changes in organic carbon deposition and availability of electron acceptors. Limnol. Oceanogr. 2008, 53, 743.
Electron budgets for the hypolimnion of a recovering urban lake, 1989–2004: response to changes in organic carbon deposition and availability of electron acceptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFKjurY%3D&md5=c895ffdacea5eabda130e613f53f3a12CAS |

[51]  E. E. Roden, A. Kappler, I. Bauer, J. Jiang, A. Paul, R. Stoesser, H. Konishi, H. Xu, Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat. Geosci. 2010, 3, 417.
Extracellular electron transfer through microbial reduction of solid-phase humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslSrtrk%3D&md5=ee804bceef9a92fe4f2b3306a02367bbCAS |

[52]  F. J. Cervantes, F. A. M. Bok, T. Duong-Dac, A. J. M. Stams, G. Lettinga, J. A. Field, Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. Environ. Microbiol. 2002, 4, 51.
Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVGqsbo%3D&md5=3448d872798f5e642488a343168fe805CAS | 11966825PubMed |

[53]  B. Nixdorf, J. Rücker, R. Deneke, P. Zippel, Limnologische Zustandsanalyse von Standgewässern im Scharmützelseegebiet, Teil I., 1/95), 52 1995 (BTU Cottbus, Fakultät Umweltwissenschaften und Verfahrenstechnik, Eigenverlag: Cottbus, Germany).

[54]  C. Bédard, R. Knowles, Hypolimnetic O2 consumption, denitrification, and methanogenesis in a thermally stratified lake. Can. J. Fish. Aquat. Sci. 1991, 48, 1048.
Hypolimnetic O2 consumption, denitrification, and methanogenesis in a thermally stratified lake.Crossref | GoogleScholarGoogle Scholar |

[55]  J. Kreling, J. Bravidor, D. F. McGinnis, M. Koschorreck, A. Lorke, Physical controls of oxygen fluxes at pelagic and benthic oxyclines in a lake. Limnol. Oceanogr. 2014, 59, 1637.
Physical controls of oxygen fluxes at pelagic and benthic oxyclines in a lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFejtr7L&md5=f653e27c18c69931b52f87c5bba7f86cCAS |

[56]  M. A. Peña, S. Katsev, T. Oguz, D. Gilbert, Modeling dissolved oxygen dynamics and hypoxia. Biogeosciences 2010, 7, 933.
Modeling dissolved oxygen dynamics and hypoxia.Crossref | GoogleScholarGoogle Scholar |

[57]  A. A. Raghoebarsing, A. Pol, K. T. van de Pas-Schoonen, A. J. P. Smolders, K. F. Ettwig, W. I. C. Rijpstra, S. Schouten, J. S. S. Damste, H. J. M. Op den Camp, M. S. M. Jetten, M. Strous, A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 2006, 440, 918.
A microbial consortium couples anaerobic methane oxidation to denitrification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVWktb4%3D&md5=bac122a5f2beba993e1ad58bc482fc6aCAS | 16612380PubMed |

[58]  G. Borrel, D. Jézéquel, C. Biderre-Petit, N. Morel-Desrosiers, J.-P. Morel, P. Peyret, G. Fonty, A. Lehours, Production and consumption of methane in freshwater lake ecosystems. Res. Microbiol. 2011, 162, 832.
Production and consumption of methane in freshwater lake ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2isrjL&md5=f4c213ae73ccf6ccbf089f9398a45210CAS | 21704700PubMed |

[59]  V. Gupta, K. A. Smemo, J. B. Yavitt, D. Fowle, B. Branfireun, N. Basiliko, Stable isotopes reveal widespread anaerobic methane oxidation across latitude and peatland type. Environ. Sci. Technol. 2013, 47, 8273.
| 1:CAS:528:DC%2BC3sXhtVCrs7zE&md5=3857678314a3a52ecf2c6f6f470fcb9cCAS | 23822884PubMed |

[60]  D. A. Matthews, S. W. Effler, C. M. Matthews, Long-term trends in methane flux from the sediments of Onondaga Lake, NY: sediment diagenesis and impacts on dissolved oxygen resources. Arch. Hydrobiol. 2005, 163, 435.
Long-term trends in methane flux from the sediments of Onondaga Lake, NY: sediment diagenesis and impacts on dissolved oxygen resources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Whs77O&md5=bde5e79f2f348315cf7d4f62d3fc340cCAS |