Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

The concentration-dependent behaviour of nanoparticles

Mohammed Baalousha A B D , Mithun Sikder A B , Ashwini Prasad C , Jamie Lead A B , Ruth Merrifield A and G. Thomas Chandler B
+ Author Affiliations
- Author Affiliations

A South Carolina SmartState Center for Environmental Nanoscience and Risk (CENR), Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.

B Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.

C School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, UK.

D Corresponding author. Email: mbaalous@mailbox.sc.edu

Environmental Chemistry 13(1) 1-3 https://doi.org/10.1071/EN15142
Submitted: 8 July 2015  Accepted: 31 August 2015   Published: 8 October 2015

Journal Compilation © CSIRO Publishing 2016 Open Access CC BY-NC-ND

Environmental context. Studies of manufactured nanoparticles (NPs) in the environment have been performed almost exclusively at high NP concentrations. These data lead to misunderstandings related to NP fate and effects at relevant environmental concentrations, which are expected to be low. A better understanding of the concentration-dependent behaviour of NPs will improve our understanding of their fate and effects under environmentally realistic conditions.

Abstract. This rapid communication highlights the importance of nanoparticle concentration in determining their environmental fate and behaviour. Notably, two fate processes have been considered: dissolution and aggregation. The decrease in nanoparticle concentration results in increased dissolution and decreased aggregate sizes, inferring higher potential for environmental transport of nanoparticles.


References

[1]  K. Loza, J. Diendorf, C. Sengstock, L. Ruiz-Gonzalez, J. M. Gonzalez-Calbet, M. Vallet-Regi, M. Koller, M. Epple, The dissolution and biological effects of silver nanoparticles in biological media. J. Mater. Chem. B Mater. Biol. Med. 2014, 2, 1634.
The dissolution and biological effects of silver nanoparticles in biological media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt1yksrw%3D&md5=a8a9b10d6938fff8c983d582decffe6dCAS |

[2]  I. Velzeboer, J. T. K. Quik, D. van de Meent, A. A. Koelmans, Rapid settling of nanoparticles due to heteroaggregation with suspended sediment. Environ. Toxicol. Chem. 2014, 33, 1766.
Rapid settling of nanoparticles due to heteroaggregation with suspended sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFKlsbnJ&md5=b85a462089073043766ae98a9d0699ebCAS | 24753080PubMed |

[3]  E. Navarro, A. Baun, R. Behra, N. B. Hartmann, J. Filser, A.-J. Miao, A. Quigg, P. H. Santschi, L. Sigg, Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicol. 2008, 17, 372.
Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVKrsLc%3D&md5=bd0c43cd3b40073839874f44ea37a2a8CAS |

[4]  S. K. Misra, S. Nuseibeh, A. Dybowska, D. Berhanu, T. D. Tetley, E. Valsami-Jones, Comparative study using spheres, rods and spindle-shaped nanoplatelets on dispersion stability, dissolution and toxicity of CuO nanomaterials. Nanotoxicol. 2014, 8, 422.
Comparative study using spheres, rods and spindle-shaped nanoplatelets on dispersion stability, dissolution and toxicity of CuO nanomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFemtLnM&md5=e264f94edc38b05bd67030f381239296CAS |

[5]  M. Baalousha, Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci. Total Environ. 2009, 407, 2093.
Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Sjtb0%3D&md5=32f133c3be48c0f29c7a7b5352a58088CAS | 19059631PubMed |

[6]  H. Hyung, J. H. Kim, Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ. Sci. Technol. 2008, 42, 4416.
Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsVKms74%3D&md5=fa139de1c43434c38e16885032e97daaCAS | 18605564PubMed |

[7]  F. Gottschalk, E. Kost, B. Nowack, Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Environ. Toxicol. Chem. 2013, 32, 1278.
Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVCnsrg%3D&md5=ff00559600974d4d4819d61928a46a20CAS | 23418073PubMed |

[8]  S. Lee, X. Bi, R. B. Reed, J. F. Ranville, P. Herckes, P. Westerhoff, Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ. Sci. Technol. 2014, 48, 10 291.
Nanoparticle size detection limits by single particle ICP-MS for 40 elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGgsrvP&md5=a8bfa52ecba4cdfe62281776ec5cfbf9CAS |

[9]  W. J. Peijnenburg, M. Baalousha, J. Chen, Q. Chaudry, F. von der Kammer, T. A. Kuhlbusch, J. Lead, C. Nickel, J. T. Quik, M. Renker, A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2084.
A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFCgt73N&md5=f9ac078927ec2d4ef2271660d87ff796CAS |

[10]  Y. W. Baek, Y. J. An, Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci. Total Environ. 2011, 409, 1603.
Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFWrsLg%3D&md5=278aa5c024752805936e5af1d1f8440bCAS | 21310463PubMed |

[11]  M. Baalousha, K. P. Arkill, I. Romer, R. E. Palmer, J. R. Lead, Transformations of citrate and tween coated silver nanoparticles reacted with Na2S. Sci. Total Environ. 2014,
| 25432129PubMed |

[12]  M. Baalousha, A. Prasad, J. R. Lead, Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy. Environ. Sci. Process. Impacts 2014, 16, 1338.
Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovVKns7s%3D&md5=df235d9e804e5f3eb05a9e73210af9e2CAS | 24668140PubMed |

[13]  A. Prasad, M. Baalousha, J. R. Lead, An electron microscopy based method for the detection and quantification of nanomaterial number concentration in environmentally relevant media. Sci. Total Environ. 2015, 537, 479.
An electron microscopy based method for the detection and quantification of nanomaterial number concentration in environmentally relevant media.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC287ntlKnug%3D%3D&md5=e808d779ea4aa6aaf3ffaab353c4f168CAS | 26322596PubMed |

[14]  C. Levard, S. Mitra, T. Yang, A. D. Jew, A. R. Badireddy, G. V. Lowry, G. E. Brown, Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ. Sci. Technol. 2013, 47, 5738.
Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvF2js70%3D&md5=948f6546229a8c03371c6e157f9838f6CAS | 23641814PubMed |

[15]  M. Z. Oskolkova, A. Stradner, J. Ulama, J. Bergenholtz, Concentration-dependent effective attractions between PEGylated nanoparticles. RSC Advances 2015, 5, 25 149.
Concentration-dependent effective attractions between PEGylated nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjs1Sjsrw%3D&md5=21d96f85c3ba5a765b81617c1f6deef3CAS |

[16]  Y. Sun, B. Gao, S. A. Bradford, L. Wu, H. Chen, X. Shi, J. Wu, Transport, retention, and size perturbation of graphene oxide in saturated porous media: effects of input concentration and grain size. Water Res. 2015, 68, 24.
Transport, retention, and size perturbation of graphene oxide in saturated porous media: effects of input concentration and grain size.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslajtLvK&md5=4ff3a0e0fd445fafb0e94fe9075c0330CAS | 25462714PubMed |

[17]  J. T. K. Quik, I. Velzeboer, M. Wouterse, A. A. Koelmans, D. van de Meent, Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res. 2014, 48, 269.
Heteroaggregation and sedimentation rates for nanomaterials in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsF2ntL%2FM&md5=00726910eca65e3f2236eb55a4ceebbdCAS |