Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Determination of the free-ion concentration of rare earth elements by an ion-exchange technique: implementation, evaluation and limits

Sébastien Leguay A , Peter G. C. Campbell A and Claude Fortin A B
+ Author Affiliations
- Author Affiliations

A Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada.

B Corresponding author. Email: fortincl@ete.inrs.ca

Environmental Chemistry 13(3) 478-488 https://doi.org/10.1071/EN15136
Submitted: 30 June 2015  Accepted: 7 October 2015   Published: 27 January 2016

Environmental context. The lanthanides are a group of heavy elements (from lanthanum to lutetium) increasingly used in many electronic consumer products and little is known about their environmental mobility and toxicity. In natural systems, these elements will bind to natural organic matter but metal toxicity is usually defined by the free metal ion concentration. Here, we propose a method based on sample equilibration with an ion-exchange resin to measure the free lanthanide ion concentration in the presence of natural organic matter.

Abstract. An ion-exchange technique that employs a polystyrene sulphonate ion-exchange resin was developed for determining environmentally relevant free-ion concentrations of Ce, Eu, La and Nd. Owing to the high affinity of rare earth elements (REE) for the selected resin, this method requires the addition of an inert salt to increase the concentration of the counter-ions (i.e. cations that are exchanged with REE bound to the resin). The use of a batch equilibration approach to calibrate the resin allowed the implementation of the ion-exchange technique at reasonably low ionic strength (I = 0.1 M). Several ligands were used to test the selectivity of the method, which proved to be highly selective for the free metal ion in presence of the tested cationic and anionic complexes (REE–nitrate, REE–malic acid and REE–nitrilotriacetic acid systems) and operational for very low proportions of REE3+, owing to the strong REE–resin interactions. The ion-exchange technique was also implemented to determine [Eu]inorg in the presence of natural humic matter (Suwannee River Humic Acid) and the results were compared with those obtained using equilibrium dialysis and those calculated with chemical equilibrium models. At pH 4.00, the measured [Eu]inorg values were in fairly good agreement with those predicted with the Windermere Humic Aqueous Model and Stockholm Humic Model, whereas the Non-Ideal Competitive Absorption model appeared to underestimate the [Eu]inorg. However, the inorganic europium concentrations were strongly underestimated (4 < [Eu]inorg, IET/[Eu]inorg, calc < 18) with the three prediction models at higher pH (5.3 and 6.2).

Additional keywords: free metal ions, humic acid, lanthanides, speciation.


References

[1]  B. Castor, J. B. Hedrick, Rare earth elements, in Industrial Minerals and Rocks (Eds J. Elzea Kogel, N. C. Trivedi, J. M. Barker) 2006. Pp. 769–792 (Society for Mining, Metallurgy and Exploration: Littleton, CO).

[2]  D. Bauer, D. Diamond, J. Li, M. Mc Kittrick, D. Sandelow, D. Telleen, Critical Materials Strategy 2011 (US Department of Energy). Available at http://energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf [Verified 14 November 2015].

[3]  P. G. C. Campbell, C. Fortin, Biotic ligand model, in Encyclopedia of Aquatic Ecotoxicology (Eds J.-F. Férard, C. Blaise) 2013, pp. 237–245 (Springer: Dordrecht, Netherlands).

[4]  L. Weltje, L. Verhoof, W. Verweij, T. Hamers, Lutetium speciation and toxicity in a microbial bioassay: testing the free-ion model for lanthanides. Environ. Sci. Technol. 2004, 38, 6597.
Lutetium speciation and toxicity in a microbial bioassay: testing the free-ion model for lanthanides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptValsLg%3D&md5=753165301257370c640754c1acc71434CAS | 15669317PubMed |

[5]  G. Yang, Q.-G. Tan, L. Zhu, K. J. Wilkinson, The role of complexation and competition in the biouptake of europium by a unicellular alga. Environ. Toxicol. Chem. 2014, 33, 2609.
The role of complexation and competition in the biouptake of europium by a unicellular alga.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslKnsb%2FI&md5=4e281cd28b1603a06dfad4ff1581f284CAS | 25132226PubMed |

[6]  A. Crémazy, P. G. C. Campbell, C. Fortin, The Biotic Ligand Model can successfully predict the uptake of a trivalent ion by a unicellular alga below pH 6.50 but not above: possible role of hydroxo-species. Environ. Sci. Technol. 2013, 47, 2408.
The Biotic Ligand Model can successfully predict the uptake of a trivalent ion by a unicellular alga below pH 6.50 but not above: possible role of hydroxo-species.Crossref | GoogleScholarGoogle Scholar | 23360212PubMed |

[7]  I. Lavoie, M. Lavoie, C. Fortin, A mine of information: benthic algal communities as biomonitors of metal contamination from abandoned tailings. Sci. Total Environ. 2012, 425, 231.
A mine of information: benthic algal communities as biomonitors of metal contamination from abandoned tailings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFejtL4%3D&md5=a2d10a887611ec9a3a177862b910d29bCAS | 22459883PubMed |

[8]  L. Hare, A. Tessier, The aquatic insect Chaoborus as a biomonitor of trace metals in lakes. Limnol. Oceanogr. 1998, 43, 1850.
| 1:CAS:528:DyaK1MXjsVaitA%3D%3D&md5=8b0620e53f00ff350193289588c25298CAS |

[9]  L.-Z. Li, D.-M. Zhou, P. Wang, H. E. Allen, S. Sauvé, Predicting Cd partitioning in spiked soils and bioaccumulation in the earthworm Eisenia fetida. Appl. Soil Ecol. 2009, 42, 118.
Predicting Cd partitioning in spiked soils and bioaccumulation in the earthworm Eisenia fetida.Crossref | GoogleScholarGoogle Scholar |

[10]  E. Strady, I. Kim, O. Radakovitch, G. Kim, Rare earth element distributions and fractionation in plankton from the north-western Mediterranean Sea. Chemosphere 2015, 119, 72.
Rare earth element distributions and fractionation in plankton from the north-western Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht12nsb3L&md5=90158483b863764d6ec675be45d3054aCAS | 24972173PubMed |

[11]  E. Tipping, S. Lofts, J. E. Sonke, Humic Ion-Binding Model VII: a revised parameterisation of cation-binding by humic substances. Environ. Chem. 2011, 8, 225.
Humic Ion-Binding Model VII: a revised parameterisation of cation-binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVWrsL0%3D&md5=018d722998601ae97dd51cb2b98856e7CAS |

[12]  O. Pourret, M. Davranche, G. Gruau, A. Dia, Organic complexation of rare earth elements in natural waters: evaluating model calculations from ultrafiltration data. Geochim. Cosmochim. Acta 2007, 71, 2718.
Organic complexation of rare earth elements in natural waters: evaluating model calculations from ultrafiltration data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslWlsr4%3D&md5=492b017e6e7f09a07c31552bfd3c236dCAS |

[13]  K. K. Mueller, S. Lofts, C. Fortin, P. G. C. Campbell, Trace metal speciation predictions in natural aquatic systems: incorporation of dissolved organic matter (DOM) spectroscopic quality. Environ. Chem. 2012, 9, 356.
Trace metal speciation predictions in natural aquatic systems: incorporation of dissolved organic matter (DOM) spectroscopic quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ajsb7L&md5=6550953059b85cb93606c8eb97192fb1CAS |

[14]  J. W. Tang, K. H. Johannesson, Speciation of rare earth elements in natural terrestrial waters: assessing the role of dissolved organic matter from the modeling approach. Geochim. Cosmochim. Acta 2003, 67, 2321.
Speciation of rare earth elements in natural terrestrial waters: assessing the role of dissolved organic matter from the modeling approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslKjtb0%3D&md5=2cb52b9989896fa347e07a720af616ecCAS |

[15]  H. A. Zamani, R. Kamjoo, M. Mohammadhosseini, M. Zaferoni, Z. Rafati, M. R. Ganjali, F. Faridbod, S. Meghdadi, Europium(III) PVC membrane sensor based on N-pyridine-2-carboxamido-8-aminoquinoline as a sensing material. Mater. Sci. Eng. C 2012, 32, 447.
Europium(III) PVC membrane sensor based on N-pyridine-2-carboxamido-8-aminoquinoline as a sensing material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVGhsL8%3D&md5=8526c74a8200871fae9529dfeea44ac7CAS |

[16]  I. Worms, D. F. Simon, C. S. Hassler, K. J. Wilkinson, Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie 2006, 88, 1721.
Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cis7rK&md5=2da9a37dea97e7d3c2735f6f83b80d81CAS | 17049417PubMed |

[17]  C. Fortin, P. G. C. Campbell, An ion-exchange technique for free metal ion measurements (Cd2+, Zn2+): applications to complex aqueous media. Int. J. Environ. Anal. Chem. 1998, 72, 173.
An ion-exchange technique for free metal ion measurements (Cd2+, Zn2+): applications to complex aqueous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis12gtLY%3D&md5=66dafbe88236cf1237a09caa88898125CAS |

[18]  C. Fortin, Y. Couillard, B. Vigneault, P. G. C. Campbell, Determination of free Cd, Cu and Zn concentrations in lake waters by in situ diffusion followed by column equilibration ion-exchange. Aquat. Geochem. 2010, 16, 151.
Determination of free Cd, Cu and Zn concentrations in lake waters by in situ diffusion followed by column equilibration ion-exchange.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyjt7rN&md5=fd535b1db19208bbff0b480129a57a60CAS |

[19]  J. Werner, Speciation and determination of low concentrations of Cd2+ and Zn2+ in humus-rich waters by an ion-exchange method. Sci. Total Environ. 1987, 62, 281.
Speciation and determination of low concentrations of Cd2+ and Zn2+ in humus-rich waters by an ion-exchange method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhvVagsLs%3D&md5=d954e46f9a8e0be647539ceb09f8225eCAS |

[20]  A. Crémazy, S. Leclair, K. K. Mueller, B. Vigneault, P. G. C. Campbell, C. Fortin, Development of an in situ ion-exchange technique for the determination of free Cd, Co, Ni, and Zn concentrations in freshwaters. Aquat. Geochem. 2015, 21, 259.
Development of an in situ ion-exchange technique for the determination of free Cd, Co, Ni, and Zn concentrations in freshwaters.Crossref | GoogleScholarGoogle Scholar |

[21]  F. F. Cantwell, J. S. Nielsen, S. E. Hrudey, Free nickel ion concentration in sewage by an ion-exchange column-equilibration method. Anal. Chem. 1982, 54, 1498.
Free nickel ion concentration in sewage by an ion-exchange column-equilibration method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XksVeqtLk%3D&md5=ca0cf87e3cc6ddbe69923817c1f1dbcfCAS |

[22]  I. A. M. Worms, K. J. Wilkinson, Determination of Ni2+ using an equilibrium ion-exchange technique: important chemical factors and applicability to environmental samples. Anal. Chim. Acta 2008, 616, 95.
Determination of Ni2+ using an equilibrium ion-exchange technique: important chemical factors and applicability to environmental samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVWjur8%3D&md5=7b2e50638b4b506b0641113cf0e5e5aaCAS |

[23]  Z. M. Anwar, H. A. Azab, Ternary complexes formed by trivalent lanthanide ions, nucleotides, and biological buffers. J. Chem. Eng. Data 2001, 46, 613.
Ternary complexes formed by trivalent lanthanide ions, nucleotides, and biological buffers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlyrs7k%3D&md5=5f8008f10150c84fc0c7e97fedd9f5bcCAS |

[24]  N. Her, G. Amy, D. Foss, J. W. Cho, Variations of molecular weight estimation by HP-size exclusion chromatography with UVA versus online DOC detection. Environ. Sci. Technol. 2002, 36, 3393.
Variations of molecular weight estimation by HP-size exclusion chromatography with UVA versus online DOC detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVahtLk%3D&md5=2ea20a991657cc0b484b4a4f8e27330bCAS | 12188370PubMed |

[25]  E. A. Martell, R. M. Smith, R. J. Motekaitis, Critical Stability Constants of Metal Complexes Database, Version 8. 0 2004 (US Department of Commerce: Gaithersburg, MD, USA). Available at http://www.nist.gov/srd/nist46.cfm [Verified 14 November 2015].

[26]  G. D. Klungness, R. H. Byrne, Comparative hydrolysis behavior of the rare earths and yttrium: the influence of temperature and ionic strength. Polyhedron 2000, 19, 99.
Comparative hydrolysis behavior of the rare earths and yttrium: the influence of temperature and ionic strength.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhslajtLg%3D&md5=d93c46c384a2ff5eccb970ac9d20ba92CAS |

[27]  F. J. Millero, Stability constants for the formation of rare-earth inorganic complexes as a function of ionic strength. Geochim. Cosmochim. Acta 1992, 56, 3123.
Stability constants for the formation of rare-earth inorganic complexes as a function of ionic strength.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXosVKqsw%3D%3D&md5=fb4a9dcf80fc08de62347079d65a94b7CAS |

[28]  C. F. Baes, R. E. Mesmer, The Hydrolysis of Cations 1976 (Wiley, New York).

[29]  J. D. Ritchie, E. M. Perdue, Analytical constraints on acidic functional groups in humic substances. Org. Geochem. 2008, 39, 783.
Analytical constraints on acidic functional groups in humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1eis7g%3D&md5=ba12f73012116083cc1eb05b9e57ee95CAS |

[30]  J. Buffle, W. Stumm, General aquatic chemistry, in Chemical and Biological Regulation of Aquatic Systems (Eds J. Buffle, R. R. De Vitre) 1994, pp. 1–42 (CRC Press: Lewis, MI, USA).

[31]  B. Vigneault, P. G. C. Campbell, Uptake of cadmium by freshwater green algae: effects of pH and aquatic humic substances. J. Phycol. 2005, 41, 55.
Uptake of cadmium by freshwater green algae: effects of pH and aquatic humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVeqtLs%3D&md5=0f170ec3c0e547afb38f4dc78af69d57CAS |

[32]  Z. Chen, P. G. C. Campbell, C. Fortin, Silver binding by humic acid as determined by equilibrium ion-exchange and dialysis. J. Phys. Chem. A 2012, 116, 6532.
Silver binding by humic acid as determined by equilibrium ion-exchange and dialysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVGhsr0%3D&md5=2825a5ad6a01cd4e236ac43ef4ea8173CAS | 22375620PubMed |

[33]  I. Grenthe, F. Mompean, K. Spahiu, H. Wanner, Guidelines for the extrapolation to zero ionic strength, in OECD Nuclear Energy Agency, Data Bank 2013 (Nuclear Energy Agency: Issy-les-Moulineaux, France).

[34]  J. R. Lead, J. Hamilton-Taylor, A. Peters, S. Reiner, E. Tipping, Europium binding by fulvic acids. Anal. Chim. Acta 1998, 369, 171.
Europium binding by fulvic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtlOnt70%3D&md5=36d5ebef5824cfebd77adbba9ec4bca6CAS |

[35]  P. El-Akl, S. Smith, K. J. Wilkinson, Linking the chemical speciation of cerium to its bioavailability in water for a freshwater alga. Environ. Toxicol. Chem. 2015, 34, 1711.
Linking the chemical speciation of cerium to its bioavailability in water for a freshwater alga.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVent7jE&md5=e0cd4ddd722276dbd9ce2d31139e1a1cCAS | 25772589PubMed |

[36]  J. Viers, B. Dupre, M. Polve, J. Schott, J. L. Dandurand, J. J. Braun, Chemical weathering in the drainage basin of a tropical watershed (Nsimi-Zoetele site, Cameroon): comparison between organic-poor and organic-rich waters. Chem. Geol. 1997, 140, 181.
Chemical weathering in the drainage basin of a tropical watershed (Nsimi-Zoetele site, Cameroon): comparison between organic-poor and organic-rich waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsFKjt7g%3D&md5=1202427800a394a6d3a0ee38f6ecdb08CAS |

[37]  S. Lofts, E. Tipping, Assessing WHAM/Model VII against field measurements of free metal ion concentrations: model performance and the role of uncertainty parameters and inputs. Environ. Chem. 2011, 8, 501.
Assessing WHAM/Model VII against field measurements of free metal ion concentrations: model performance and the role of uncertainty parameters and inputs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlykt73J&md5=809cefc1119e866c034d1ddf672bb549CAS |

[38]  M. S. Caceci, The interaction of humic acid with europium(III). Complexation strength as a function of load and pH. Radiochim. Acta 1985, 39, 51.
The interaction of humic acid with europium(III). Complexation strength as a function of load and pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xks1SjsLs%3D&md5=1691c2afc1e551cc2259376536ec5f5dCAS |