Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Revisited: DGT speciation analysis of metal–humic acid complexes

Herman P. van Leeuwen
+ Author Affiliations
- Author Affiliations

Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, Netherlands. Email: herman.vanleeuwen@wur.nl

Environmental Chemistry 13(1) 84-88 https://doi.org/10.1071/EN15066
Submitted: 28 March 2015  Accepted: 21 June 2015   Published: 3 September 2015

Environmental context. Humic acids and their metal complexes may be sorbed by the gel used in diffusive gradients in thin films (DGT) speciation analysis. Owing to the low mobility of the humic entities, the sorption process is very slow. As a consequence, the delay times involved in establishing a steady-state metal diffusion flux may be in the order of days.

Abstract. Soil humic acids and their metal complexes are sorbed by hydrogel phases such as those used in DGT analysis. The accumulation is spatially inhomogeneous: a thin film near the interface with the aqueous medium typically hosts ~10 times the concentration in the medium, whereas the bulk gel features an accumulation factor of ~2. Here we discuss the consequences of these sorption properties for the usual type of DGT experiment. It appears that the eventual steady-state metal flux is not affected, but the characteristic time of establishing truly steady-state diffusion conditions may be even longer than the common DGT deployment time of a few days.

Additional keywords: sorption, steady-state, timescale.


References

[1]  J. Buffle, Complexation Reactions in Aquatic Systems: an Analytical Approach 1988 (Ellis Horwood: Chichester, UK).

[2]  H. P. van Leeuwen, R. M. Town, J. Buffle, R. F. M. J. Cleven, W. Davison, J. Puy, W. H. van Riemsdijk, L. Sigg, Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environ. Sci. Technol. 2005, 39, 8545.
Dynamic speciation analysis and bioavailability of metals in aquatic systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOis73M&md5=474d97d2e2363540e2360e03b1f4a98fCAS | 16323747PubMed |

[3]  P. Bradac, B. Wagner, D. Kistler, J. Traber, R. Behra, L. Sigg, Cadmium speciation and accumulation in periphyton in a small stream with dynamic concentration variations. Environ. Pollut. 2010, 158, 641.
Cadmium speciation and accumulation in periphyton in a small stream with dynamic concentration variations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1Onsg%3D%3D&md5=411e1067dcce7bb24359abf90461f9ecCAS | 19913341PubMed |

[4]  L. Sigg, F. Black, J. Buffle, J. Cao, R. Cleven, W. Davison, J. Galceran, P. Gunkel, E. Kalis, D. Kistler, S. Noel, Y. Nur, N. Odzak, J. Puy, W. van Riemsdijk, E. Temminghoff, M.-L. Tercier-Waeber, S. Toepperwien, R. M. Town, E. Unsworth, K. Warnken, L. Weng, H. Xue, H. Zhang, Comparison of analytical techniques for dynamic trace metal speciation analysis in natural freshwaters. Environ. Sci. Technol. 2006, 40, 1934.
Comparison of analytical techniques for dynamic trace metal speciation analysis in natural freshwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yhsLk%3D&md5=d5016d472512f001bdd15dec070ccd7aCAS | 16570618PubMed |

[5]  N. Odzak, D. Kistler, H. Xue, L. Sigg, In situ trace metal speciation in a eutrophic lake using the technique of diffusion gradients in thin films (DGT). Aquat. Sci. 2002, 64, 292.
In situ trace metal speciation in a eutrophic lake using the technique of diffusion gradients in thin films (DGT).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVSrt7c%3D&md5=032d53f10c3cb8aa186ed6a9202a3a81CAS |

[6]  S. Meylan, N. Odzak, R. Behra, L. Sigg, Speciation of copper and zinc in natural freshwater: comparison of voltammetric measurements, diffusive gradients in thin films (DGT) and chemical equilibrium models. Anal. Chim. Acta 2004, 510, 91.
Speciation of copper and zinc in natural freshwater: comparison of voltammetric measurements, diffusive gradients in thin films (DGT) and chemical equilibrium models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivF2jurY%3D&md5=ab5d8671fa070a2f88a18342e41352a5CAS |

[7]  W. Davison, H. Zhang, Progress in understanding the use of diffusive gradients in thin films (DGT) – back to basics. Environ. Chem. 2012, 9, 1.
Progress in understanding the use of diffusive gradients in thin films (DGT) – back to basics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1amtbs%3D&md5=9a2cd144d20e8df121dca13aeb1b582fCAS |

[8]  J. L. Levy, H. Zhang, W. Davison, J. Galceran, J. Puy, Kinetic signatures of metals in the presence of Suwannee River Fulvic Acid. Environ. Sci. Technol. 2012, 46, 3335.
Kinetic signatures of metals in the presence of Suwannee River Fulvic Acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFSitrc%3D&md5=2c0b8545b0782cea027e77dc7eb0f755CAS | 22352943PubMed |

[9]  H. Zhang, W. Davison, Use of diffusive gradients in thin-films for studies of chemical speciation and bioavailability. Environ. Chem. 2015, 12, 85.
Use of diffusive gradients in thin-films for studies of chemical speciation and bioavailability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltVWnu7c%3D&md5=380e75e2860631afe84dbfe61c057faaCAS |

[10]  J. Galceran, J. Puy, Interpretation of diffusion gradients in thin films (DGT) measurements: a systematic approach. Environ. Chem. 2015, 12, 112.
Interpretation of diffusion gradients in thin films (DGT) measurements: a systematic approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltVWmsr4%3D&md5=36ed6e6278ba623cf6159fb6b9c366d8CAS |

[11]  H. P. van Leeuwen, J. Buffle, Voltammetry of heterogeneous metal complex systems. Theoretical analysis of the effects of association/dissociation kinetics and the ensuing lability criteria. J. Electroanal. Chem. 1990, 296, 359.
Voltammetry of heterogeneous metal complex systems. Theoretical analysis of the effects of association/dissociation kinetics and the ensuing lability criteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhsFarsbs%3D&md5=2fe61a7b5a3db1fda2b854e1d14a1103CAS |

[12]  B. J. Stanley, K. Topper, D. B. Marshall, Analysis of the heterogeneous rate of dissociation of Cu(II) from humic and fulvic acids by statistical deconvolution. Anal. Chim. Acta 1994, 287, 25.
Analysis of the heterogeneous rate of dissociation of Cu(II) from humic and fulvic acids by statistical deconvolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitFKju7o%3D&md5=92f94d32eb7f15a1ef185e05eb3cfdf3CAS |

[13]  L. Marang, P. Reiller, M. Pepe, M. F. Benedetti, Donnan membrane approach: from equilibrium to dynamic speciation. Environ. Sci. Technol. 2006, 40, 5496.
Donnan membrane approach: from equilibrium to dynamic speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFahtrs%3D&md5=1371231801edc4a142341227e5da7d44CAS | 16999130PubMed |

[14]  R. M. Town, P. Chakraborty, H. P. van Leeuwen, Dynamic DGT speciation analysis and applicability to natural heterogeneous complexes. Environ. Chem. 2009, 6, 170.
Dynamic DGT speciation analysis and applicability to natural heterogeneous complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVyqtrY%3D&md5=008923a337da71eff1e9f3f588cbae99CAS |

[15]  R. M. Town, H. P. van Leeuwen, Labilities of aqueous nanoparticulate metal complexes in environmental speciation analysis. Environ. Chem. 2014, 11, 196.
Labilities of aqueous nanoparticulate metal complexes in environmental speciation analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslymt7c%3D&md5=fb6c0206556e5f87f01792b8451d4011CAS |

[16]  P. L. R. van der Veeken, H. P. van Leeuwen, DGT/DET gel partition features of humic acid/metal species. Environ. Sci. Technol. 2010, 44, 5523.
DGT/DET gel partition features of humic acid/metal species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFGitbw%3D&md5=5d20baa4ef517ac02a0c2c44113695d0CAS |

[17]  P. L. R. van der Veeken, H. P. van Leeuwen, Gel–water partitioning of soil humics in diffusive gradient in thin film (DGT) analysis of their metal complexes. Environ. Chem. 2012, 9, 24.
Gel–water partitioning of soil humics in diffusive gradient in thin film (DGT) analysis of their metal complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1amtb8%3D&md5=4e3c9ebbe3335da493bacd34da0b4493CAS |

[18]  K. Zielińska, R. M. Town, K. Yasadi, H. P. van Leeuwen, Partitioning of humic acids between aqueous solution and hydrogel: concentration profiling of humic acid in hydrogel phases. Langmuir 2014, 30, 2084.
Partitioning of humic acids between aqueous solution and hydrogel: concentration profiling of humic acid in hydrogel phases.Crossref | GoogleScholarGoogle Scholar | 24512499PubMed |

[19]  K. Zielińska, R. M. Town, K. Yasadi, H. P. van Leeuwen, Partitioning of humic acids between aqueous solution and hydrogel. 2. Impact of physicochemical conditions. Langmuir 2015, 31, 283.
Partitioning of humic acids between aqueous solution and hydrogel. 2. Impact of physicochemical conditions.Crossref | GoogleScholarGoogle Scholar | 25479141PubMed |

[20]  W. Davison, C. Lin, Y. Gao, H. Zhang, Effect of gel interactions with dissolved organic matter on DGT measurements of trace metals. Aquat. Geochem. 2015, 21, 281.
Effect of gel interactions with dissolved organic matter on DGT measurements of trace metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFejurvN&md5=f2fee2292f3e3b1763f3cb7e31a4f99dCAS |

[21]  S. Scally, W. Davison, H. Zhang, Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films. Anal. Chim. Acta 2006, 558, 222.
Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFygtw%3D%3D&md5=da6bcb9f4d2d9cb2410b138a8f6d4968CAS |

[22]  Ø. A. Garmo, W. Davison, H. Zhang, Interactions of trace metals with hydrogels and filter membranes used in DET and DGT techniques. Environ. Sci. Technol. 2008, 42, 5682.
Interactions of trace metals with hydrogels and filter membranes used in DET and DGT techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1Wjsrg%3D&md5=d48600092f3018297f6a15b63ebf75fdCAS | 18754493PubMed |

[23]  P. L. R. van der Veeken, P. Chakraborty, H. P. van Leeuwen, Accumulation of humic acid in DET/DGT gels. Environ. Sci. Technol. 2010, 44, 4253.
Accumulation of humic acid in DET/DGT gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslWgsL8%3D&md5=bd1e4bbbed6e14f27f795289c0994f56CAS |

[24]  K. Yasadi, J. P. Pinheiro, K. Zielińska, R. M. Town, H. P. van Leeuwen, Partitioning of humic acids between aqueous solution and hydrogel. 3. Microelectrodic dynamic speciation analysis of free and bound humic metal complexes in the gel phase. Langmuir 2015, 31, 1737.
Partitioning of humic acids between aqueous solution and hydrogel. 3. Microelectrodic dynamic speciation analysis of free and bound humic metal complexes in the gel phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmvVyqtA%3D%3D&md5=bc64963cc239036fbd986a3a40e0addaCAS | 25580682PubMed |

[25]  J. Crank, The Mathematics of Diffusion, 2nd edn 1975 (Oxford University Press: New York).

[26]  R. von Wandruszka, The micellar model of humic acid: evidence from pyrene fluorescence measurements. Soil Sci. 1998, 163, 921.
The micellar model of humic acid: evidence from pyrene fluorescence measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFSjsg%3D%3D&md5=4fe12d23cd6763be0bf1b58c7131961cCAS |

[27]  H. P. van Leeuwen, Steady-state DGT fluxes of nanoparticulate metal complexes. Environ. Chem. 2011, 8, 525.
Steady-state DGT fluxes of nanoparticulate metal complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlykt73F&md5=b13653489af1f364daf08523e0862ad2CAS |

[28]  A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn 2001 (Wiley: New York).

[29]  J. P. Pinheiro, A. M. Mota, H. P. van Leeuwen, On lability of chemically heterogeneous systems. Complexes between trace metals and humic matter. Coll. Surf. A 1999, 151, 18110.1016/S0927-7757(98)00701-8

[30]  R. Cleven, Y. Nur, P. Krystek, G. van den Berg, Monitoring metal speciation in the rivers Meuse and Rhine using DGT. Water Air Soil Pollut. 2005, 165, 249.
Monitoring metal speciation in the rivers Meuse and Rhine using DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntleitL4%3D&md5=e6966ac904be507e27443fa17f1230ccCAS |

[31]  R. Uribe, S. Mongin, J. Puy, J. Cecília, J. Galceran, H. Zhang, W. Davison, Contribution of partially labile complexes to the DGT metal flux. Environ. Sci. Technol. 2011, 45, 5317.
Contribution of partially labile complexes to the DGT metal flux.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVWlsLs%3D&md5=d6a06575a90533db185f3dd8902601c3CAS | 21608530PubMed |

[32]  J. Puy, R. Uribe, S. Mongin, J. Galceran, J. Cecília, J. Levy, H. Zhang, W. Davison, Lability criteria in diffusive gradient in thin films. J. Phys. Chem. A 2012, 116, 6564.
Lability criteria in diffusive gradient in thin films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFegsbc%3D&md5=b329c0204fd401e19045c193f6bf359aCAS | 22404162PubMed |

[33]  S. Mongin, R. Uribe, C. Rey-Castro, J. Cecília, J. Galceran, J. Puy, Limits of the linear accumulation regime of DGT sensors. Environ. Sci. Technol. 2013, 47, 10 438.
| 1:CAS:528:DC%2BC3sXht1KltLbF&md5=5972ba00e33c2a49a255608c43634fd6CAS |

[34]  R. Uribe, J. Puy, J. Cecília, J. Galceran, Kinetic mixture effects in diffusion gradients in thin films (DGT). Phys. Chem. Chem. Phys. 2013, 15, 11 349.
Kinetic mixture effects in diffusion gradients in thin films (DGT).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1yhtLk%3D&md5=93f37acd9c01f9db5e11e726ac02029cCAS |