Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Electric condensation of divalent counterions by humic acid nanoparticles

Herman P. van Leeuwen A and Raewyn M. Town B C
+ Author Affiliations
- Author Affiliations

A Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, the Netherlands.

B Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark.

C Corresponding author. Email: raewyn.town@sdu.dk

Environmental Chemistry 13(1) 76-83 https://doi.org/10.1071/EN15055
Submitted: 11 March 2015  Accepted: 7 May 2015   Published: 28 August 2015

Environmental context. Humic acids are negatively charged soft nanoparticles that play a governing role in the speciation of many ionic and molecular compounds in the environment. The charge density in the humic acid nanoparticle can be very high and the binding of divalent cations such as Ca2+ appears to go far beyond traditional ion pairing or Poisson–Boltzmann electrostatics. A two-state approach, combining counterion condensation in the intraparticulate double layer and classical Donnan partitioning in the bulk of the particle, provides a satisfactory description of the physicochemical speciation.

Abstract. Experimental data for divalent counterion binding by soil humic acid nanoparticles are set against ion distributions as ensuing from continuous Poisson–Boltzmann electrostatics and a two-state condensation approach. The results demonstrate that Poisson–Boltzmann massively underestimates the extent of binding of Ca2+ by humic acid, and that electric condensation of these counterions within the soft nanoparticulate body must be involved. The measured stability of the Ca2+–humic acid associate is also much greater than that predicted for ion pairing between single Ca2+ ions and monovalent negative humic acid sites, which also points to extensive electrostatic cooperativity within the humic acid particle. At sufficiently high pH, the charge density inside the humic acid entity may indeed become so high that the bulk particle attains a very high and practically flat potential profile throughout. At this limit, all the intraparticulate Ca2+ is at approximately the same electrostatic potential and the status of individual ion pairs has become immaterial. A two-state model, combining counterion condensation in the charged intraparticulate part of the double layer at the particle–medium interface and Donnan partitioning in the uncharged bulk of the humic acid particle, seems to lead the way to adequate modelling of the divalent counterion binding for various particle sizes and different ionic strengths.

Additional keywords: Donnan, electrostatic condensation, ion pair, Manning, Poisson–Boltzmann.


References

[1]  H. P. van Leeuwen, J. Buffle, Chemodynamics of aquatic metal complexes: from small ligands to colloids. Environ. Sci. Technol. 2009, 43, 7175.
Chemodynamics of aquatic metal complexes: from small ligands to colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFOjsbY%3D&md5=c4b04b96d53dae9de905fb23c05aaea6CAS | 19848119PubMed |

[2]  H. P. van Leeuwen, J. Buffle, J. F. L. Duval, R. M. Town, Understanding the extraordinary ionic reactivity of aqueous nanoparticles. Langmuir 2013, 29, 10 297.
Understanding the extraordinary ionic reactivity of aqueous nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Wju73K&md5=9d35b37f41a9071a631a59554bd0e9d4CAS |

[3]  R. M. Town, H. P. van Leeuwen, Labilities of aqueous nanoparticulate metal complexes in environmental speciation analysis. Environ. Chem. 2014, 11, 196.
Labilities of aqueous nanoparticulate metal complexes in environmental speciation analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslymt7c%3D&md5=fb6c0206556e5f87f01792b8451d4011CAS |

[4]  M. Eigen, Fast elementary steps in chemical reaction mechanisms. Pure Appl. Chem. 1963, 6, 97.
Fast elementary steps in chemical reaction mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXktVKitb0%3D&md5=2c456c22ee88feaab46e70d7526b9f87CAS |

[5]  H. P. van Leeuwen, J. Buffle, R. M. Town, Electric relaxation processes in chemodynamics of aqueous metal complexes: from simple ligands to soft nanoparticulate complexants. Langmuir 2012, 28, 227.
Electric relaxation processes in chemodynamics of aqueous metal complexes: from simple ligands to soft nanoparticulate complexants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCitr7E&md5=ce3885259f9aa7a10f5ce5fe93004fcbCAS | 22126743PubMed |

[6]  K. Krishnan, R. A. Plane, Raman spectra of ethylenediaminetetraacetic acid and its metal complexes. J. Am. Chem. Soc. 1968, 90, 3195.
Raman spectra of ethylenediaminetetraacetic acid and its metal complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXkt1entrY%3D&md5=e8307e61a159d3da9dda717d89be0e57CAS |

[7]  L. A. Clapp, C. J. Siddons, J. R. Whitehead, D. G. VanDerveer, R. D. Rogers, S. T. Griffin, S. B. Jones, R. D. Hancock, Factors controlling metal-ion selectivity in the binding sites of calcium-binding proteins. The metal-binding properties of amide donors. A crystallographic and thermodynamic study. Inorg. Chem. 2005, 44, 8495.
Factors controlling metal-ion selectivity in the binding sites of calcium-binding proteins. The metal-binding properties of amide donors. A crystallographic and thermodynamic study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSjt7zE&md5=ef287c2517a2eb26506fd7911f6794ccCAS | 16270989PubMed |

[8]  J. Buffle, Complexation Reactions in Aquatic Systems: An Analytical Approach 1988 (Ellis Horwood: Chichester, UK).

[9]  M. J. Avena, A. W. P. Vermeer, L. K. Koopal, Volume and structure of humic acids studied by viscometry. pH and electrolyte concentration effects. Coll. Surf. A 1999, 151, 213.
Volume and structure of humic acids studied by viscometry. pH and electrolyte concentration effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvV2nsL8%3D&md5=9f1ab8647cafd7324cdb571aa004d5d3CAS |

[10]  G. S. Manning, Counterion binding in polyelectrolyte theory. Acc. Chem. Res. 1979, 12, 443.
Counterion binding in polyelectrolyte theory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXmtFOmurY%3D&md5=a726dc4679a85d4037573b45c6b3af09CAS |

[11]  M. Guéron, G. Weisbuch, Polyelectrolyte theory. I. Counterion accumulation, site-binding, and their insensitivity to polyelectrolyte shape in solutions containing finite salt concentrations. Biopolymers 1980, 19, 353.
Polyelectrolyte theory. I. Counterion accumulation, site-binding, and their insensitivity to polyelectrolyte shape in solutions containing finite salt concentrations.Crossref | GoogleScholarGoogle Scholar |

[12]  M. A. G. T. Van Den Hoop, H. P. van Leeuwen, R. F. M. J. Cleven, Study of the polyelectrolyte properties of humic acids by conductimetric titration. Anal. Chim. Acta 1990, 232, 141.
Study of the polyelectrolyte properties of humic acids by conductimetric titration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkslOisL8%3D&md5=528db261ed59c43a38b9062016405a33CAS |

[13]  G. M. Roger, G. Mériguet, O. Bernard, S. Durand-Vidal, P. Turq, Effect of ionic condensation and interactions between humic substances on their mobility: an experimental and simulation study. Coll. Surf. A. 2013, 436, 408.
Effect of ionic condensation and interactions between humic substances on their mobility: an experimental and simulation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1SgurrN&md5=03f487b06ddc888fa0c58dcaa715d787CAS |

[14]  J. R. Lead, J. Hamilton-Taylor, N. Hesketh, M. N. Jones, A. E. Wilkinson, E. Tipping, A comparative study of proton and alkaline earth metal binding by humic substances. Anal. Chim. Acta 1994, 294, 319.
A comparative study of proton and alkaline earth metal binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlslyksr8%3D&md5=85cc06162db2d677d0aa3747831b0387CAS |

[15]  L. K. Koopal, T. Saito, J. P. Pinheiro, W. H. van Riemsdijk, Ion binding to natural organic matter: general considerations and the NICA–Donnan model. Colloids Surf. A Physicochem. Eng. Asp. 2005, 265, 40.
Ion binding to natural organic matter: general considerations and the NICA–Donnan model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1ynt7s%3D&md5=db0839c3884f0df7bb3d5d81955874b1CAS |

[16]  E. R. Engebretson, R. von Wandruszka, The effect of molecular size on humic acid associations. Org. Geochem. 1997, 26, 759.
The effect of molecular size on humic acid associations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1SrtQ%3D%3D&md5=b8fae6952a9516db1fadeeeb528f1f49CAS |

[17]  A. Kirishima, K. Tanaka, Y. Niibori, O. Tochiyama, Complex formation of calcium with humic acid and polyacrylic acid. Radiochim. Acta 2002, 90, 555.
Complex formation of calcium with humic acid and polyacrylic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtF2lsbs%3D&md5=a385d2c54d8206b165da062b5b8a18fdCAS |

[18]  R. Fuoss, Ionic association. III. The equilibrium between ion pairs and free ions. J. Am. Chem. Soc. 1958, 80, 5059.
Ionic association. III. The equilibrium between ion pairs and free ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXhtVahtg%3D%3D&md5=efdc8afe4cef1fb180a8cc877c10bf49CAS |

[19]  H. Ohshima, T. Kondo, Relationship among the surface potential, Donnan potential and charge density of ion-penetrable membranes. Biophys. Chem. 1990, 38, 117.
Relationship among the surface potential, Donnan potential and charge density of ion-penetrable membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXovFWrsA%3D%3D&md5=f4aa1cccb906e28de44443384e5107baCAS | 17056438PubMed |

[20]  L. P. Yezek, H. P. van Leeuwen, Donnan effects in the steady-state diffusion of metal ions through charged thin films. Langmuir 2005, 21, 10 342.
Donnan effects in the steady-state diffusion of metal ions through charged thin films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGqsrjJ&md5=1b31f1725c1cd7d6c08807ee15b3b188CAS |

[21]  H. P. van Leeuwen, R. M. Town, J. Buffle, Chemodynamics of soft nanoparticulate metal complexes in aqueous media: basic theory for spherical particles with homogeneous spatial distributions of sites and charges. Langmuir 2011, 27, 4514.
Chemodynamics of soft nanoparticulate metal complexes in aqueous media: basic theory for spherical particles with homogeneous spatial distributions of sites and charges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1Ghs78%3D&md5=50c07d3f0fb1e5d4c076bc9ba7404f88CAS | 21410210PubMed |

[22]  H. P. van Leeuwen, R. M. Town, J. Buffle, Impact of ligand protonation on Eigen-type metal complexation kinetics in aqueous systems. J. Phys. Chem. A 2007, 111, 2115.
Impact of ligand protonation on Eigen-type metal complexation kinetics in aqueous systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVCnu7w%3D&md5=c12aea50ca79fa80124f49e69b29ece0CAS | 17388287PubMed |

[23]  H. P. van Leeuwen, Eigen kinetics in surface complexation of aqueous metal ions. Langmuir 2008, 24, 11 718.
Eigen kinetics in surface complexation of aqueous metal ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFChsbbK&md5=73690c6df53a45a740995d908851923aCAS |

[24]  R. M. Town, J. F. L. Duval, J. Buffle, H. P. van Leeuwen, Chemodynamics of metal complexation by natural soft colloids: Cu(II) binding by humic acid. J. Phys. Chem. A 2012, 116, 6489.
Chemodynamics of metal complexation by natural soft colloids: Cu(II) binding by humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFKksLk%3D&md5=b965b748368ab2627f7242bfda0bcbe8CAS | 22324832PubMed |

[25]  G. S. Manning, The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. 1978, 11, 179.
The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlsFyqsLs%3D&md5=176d1e6c7734d5f12770ada2c3ef470dCAS | 353876PubMed |

[26]  J. F. L. Duval, K. J. Wilkinson, H. P. van Leeuwen, J. Buffle, Humic substances are soft and permeable: evidence from their electrophoretic mobilities. Environ. Sci. Technol. 2005, 39, 6435.
Humic substances are soft and permeable: evidence from their electrophoretic mobilities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvFKjs70%3D&md5=b5334f5f9844111179697dc0ddeb7de7CAS |

[27]  A. G. Volkov, S. Paula, D. W. Deamer, Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochem. Bioenerg. 1997, 42, 153.
Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktVWqtL4%3D&md5=d65f0341ad84d8e800a1afaadd4101cdCAS |

[28]  R. von Wandruszka, The micellar model of humic acid: evidence from pyrene fluorescence measurements. Soil Sci. 1998, 163, 921.
The micellar model of humic acid: evidence from pyrene fluorescence measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFSjsg%3D%3D&md5=4fe12d23cd6763be0bf1b58c7131961cCAS |

[29]  I. Christl, Ionic strength- and pH-dependence of calcium binding by terrestrial humic acids. Environ. Chem. 2012, 9, 89.
Ionic strength- and pH-dependence of calcium binding by terrestrial humic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1amtLc%3D&md5=7b595ec08562b3052022c967db195296CAS |

[30]  J. G. Hering, F. M. M. Morel, Humic acid complexation of calcium and copper. Environ. Sci. Technol. 1988, 22, 1234.
Humic acid complexation of calcium and copper.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltlCmsbo%3D&md5=42e1140ffc57b973bd0194e701f7050dCAS | 22148621PubMed |

[31]  E. J. M. Temminghoff, S. E. A. T. M. van der Zee, F. A. M. de Haan, Effects of dissolved organic matter on the mobility of copper in contaminated sandy soil. Eur. J. Soil Sci. 1998, 49, 617.
Effects of dissolved organic matter on the mobility of copper in contaminated sandy soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVWlsA%3D%3D&md5=ffb4170703de96e9106db9fbc3b7ffb7CAS |

[32]  C. J. Milne, D. G. Kinniburgh, J. C. M. de Wit, W. H. van Riemsdijk, L. K. Koopal, Analysis of metal-ion binding by a peat humic acid using a simple electrostatic model. J. Colloid Interface Sci. 1995, 175, 448.
Analysis of metal-ion binding by a peat humic acid using a simple electrostatic model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXos12jtbw%3D&md5=a833bdd0559259874f21fcc5a7ef2c09CAS |

[33]  I. Christl, R. Kretzschmar, Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 1. Proton binding. Environ. Sci. Technol. 2001, 35, 2505.
Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 1. Proton binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlClu7g%3D&md5=9ff002f13f0092aea2cd5c061d0f1459CAS | 11432555PubMed |

[34]  G. Abate, J. C. Masini, Complexation of Cd(II) and Pb(II) with humic acids studied by anodic stripping voltammetry using differential equilibrium functions and discrete site models. Org. Geochem. 2002, 33, 1171.
Complexation of Cd(II) and Pb(II) with humic acids studied by anodic stripping voltammetry using differential equilibrium functions and discrete site models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVWrtbc%3D&md5=d21b1d0ea923262d73eb4ea07b0a6988CAS |

[35]  J. Puy, J. Galceran, C. Huidobro, E. Companys, N. Samper, J. L. Garcés, F. Mas, Conditional affinity spectra of Pb2+–humic acid complexation from data obtained with AGNES. Environ. Sci. Technol. 2008, 42, 9289.
Conditional affinity spectra of Pb2+–humic acid complexation from data obtained with AGNES.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKqtLjI&md5=fb56c738b6069849c1c73b070664dcf2CAS | 19174906PubMed |

[36]  C. J. Milne, D. G. Kinniburgh, J. C. M. de Wit, W. H. van Riemsdijk, L. Koopal, Analysis of proton binding by a peat humic acid using a simple electrostatic model. Geo. Cosmo. Acta 1995, 59, 1101.
Analysis of proton binding by a peat humic acid using a simple electrostatic model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXks1Gju78%3D&md5=277a6e189f01d4b6e98faf7590d06ee4CAS |

[37]  J. Buffle, Z. Zhang, K. Startchev, Metal flux and dynamic speciation at (bio)interfaces. Part I: critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances. Environ. Sci. Technol. 2007, 41, 7609.
Metal flux and dynamic speciation at (bio)interfaces. Part I: critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ymtr3E&md5=0bca63d21df8f7dc0f6d06f20959a89fCAS | 18075065PubMed |

[38]  W. F. Tan, L. K. Koopal, W. Norde, Interaction between humic acid and lysozyme, studied by dynamic light scattering and isothermal titration calorimetry. Environ. Sci. Technol. 2009, 43, 591.
Interaction between humic acid and lysozyme, studied by dynamic light scattering and isothermal titration calorimetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Sq&md5=5a8dd491be41525c9d5f931462c35f12CAS | 19244988PubMed |

[39]  J. P. Pinheiro, A. M. Mota, J. M. R. d’Oliveira, J. M. G. Martinho, Dynamic properties of humic matter by dynamic light scattering and voltammetry. Anal. Chim. Acta 1996, 329, 15.
Dynamic properties of humic matter by dynamic light scattering and voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltFGkurc%3D&md5=29cc843c4202b5c2b31359f38a734d26CAS |

[40]  K. Zielińska, R. M. Town, K. Yasadi, H. P. van Leeuwen, Partitioning of humic acids between aqueous solution and hydrogel. 2. Impact of physicochemical conditions. Langmuir 2015, 31, 283.
Partitioning of humic acids between aqueous solution and hydrogel. 2. Impact of physicochemical conditions.Crossref | GoogleScholarGoogle Scholar | 25479141PubMed |

[41]  E. Dinar, T. F. Meutel, Y. Rudich, The density of humic acids and humic-like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles. Atmos. Chem. Phys. 2006, 6, 5213.
The density of humic acids and humic-like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1eitrc%3D&md5=6fe6dd37cc053a7bca4e2be07f28b94fCAS |

[42]  F. J. Millero, F. Gombar, J. Oster, The partial molal volume and compressibility change for the formation of the calcium sulfate ion pair at 25 °C. J. Solution Chem. 1977, 6, 269.
The partial molal volume and compressibility change for the formation of the calcium sulfate ion pair at 25 °C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktFagur4%3D&md5=351d5ef28ee6c425e2dc7fe7ae01c52fCAS |

[43]  L. M. Hamm, A. F. Wallace, P. M. Dove, Molecular dynamics of ion hydration in the presence of small carboxylate molecules and implications for calcification. J. Phys. Chem. B 2010, 114, 10 488.
Molecular dynamics of ion hydration in the presence of small carboxylate molecules and implications for calcification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVKrsb8%3D&md5=0f4ce8738d9d89fc0e66ee104be2dcf8CAS |

[44]  E. Tipping, Humic Ion-Binding Model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem. 1998, 4, 3.
Humic Ion-Binding Model VI: an improved description of the interactions of protons and metal ions with humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlSjuro%3D&md5=cf0c6c40511e5000b173c62e5266b947CAS |

[45]  W. Tan, J. Xiong, Y. Li, M. Wang, L. Weng, L. K. Koopal, Proton binding to soil humic and fulvic acids: experiments and NICA–Donnan modeling. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 1152.
Proton binding to soil humic and fulvic acids: experiments and NICA–Donnan modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1SgurvE&md5=c81bb0107c68d185a5005f7f2e3f0c7dCAS |

[46]  M. Hosse, K. J. Wilkinson, Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of pH and ionic strength. Environ. Sci. Technol. 2001, 35, 4301.
Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of pH and ionic strength.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt12qu7g%3D&md5=2d21d3f10a07b7df3a2e41d7314dac5eCAS | 11718346PubMed |

[47]  F. d’Orlyé, P. E. Reiller, Contribution of capillary electrophoresis to an integrated vision of humic substances size and charge characteristics. J. Colloid Interface Sci. 2012, 368, 231.
Contribution of capillary electrophoresis to an integrated vision of humic substances size and charge characteristics.Crossref | GoogleScholarGoogle Scholar | 22189387PubMed |

[48]  M. J. Avena, L. K. Koopal, W. H. van Riemsdijk, Proton binding to humic acids: electrostatic and intrinsic interactions. J. Colloid Interface Sci. 1999, 217, 37.
Proton binding to humic acids: electrostatic and intrinsic interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVaht7s%3D&md5=1e4530020614f62512052817050d4e58CAS | 10441409PubMed |

[49]  T. Saito, L. K. Koopal, S. Nagasaki, S. Tanaka, Electrostatic potentials of humic acid: fluorescence quenching measurements and comparison with model calculations. Colloids Surf. A Physicochem. Eng. Asp. 2009, 347, 27.
Electrostatic potentials of humic acid: fluorescence quenching measurements and comparison with model calculations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGqsL3M&md5=b5fe2fb51b87f3dbbd31f6eca2bfb45cCAS |

[50]  C. J. Milne, D. G. Kinniburgh, W. H. van Riemsdijk, E. Tipping, Generic NICA–Donnan model parameters for metal-ion binding by humic substances. Environ. Sci. Technol. 2003, 37, 958.
Generic NICA–Donnan model parameters for metal-ion binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVWgsQ%3D%3D&md5=2eda2310a7221ae42b73f399e3b9e8b5CAS | 12666927PubMed |

[51]  L. A. Oste, E. J. M. Temminghoff, T. M. Lexmond, W. H. van Riemsdijk, Measuring and modeling zinc and cadmium binding by humic acid. Anal. Chem. 2002, 74, 856.
Measuring and modeling zinc and cadmium binding by humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVeksA%3D%3D&md5=b7fd8b14c1233c1c44e71bbe524d4ad2CAS | 11871375PubMed |

[52]  T. J. Swift, R. E. Connick, NMR-relaxation mechanisms of O17 in aqueous solutions of paramagnetic cations and the lifetime of water molecules in the first coordination sphere. J. Chem. Phys. 1962, 37, 307.
NMR-relaxation mechanisms of O17 in aqueous solutions of paramagnetic cations and the lifetime of water molecules in the first coordination sphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xksl2qs78%3D&md5=fa2a155c82e02fd2c74deb571f608777CAS |

[53]  M. Grant, H. W. Dodgen, J. P. Hunt, Kinetics of water exchange between solvent and aquobipyridylnickel(II) complexes. J. Am. Chem. Soc. 1970, 92, 2321.
Kinetics of water exchange between solvent and aquobipyridylnickel(II) complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXht1Gnurc%3D&md5=c0ba3e0b1337fab6187e3a38e9b5d83dCAS |

[54]  A. G. Desai, H. W. Dodgen, J. P. Hunt, Water exchange between solvent and aquoamminenickel(II) complexes. J. Am. Chem. Soc. 1970, 92, 798.
Water exchange between solvent and aquoamminenickel(II) complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXptlyhsw%3D%3D&md5=36aea62892bf1729524cec8acb8f36a6CAS |

[55]  M. Eigen, R. G. Wilkins, The kinetics and mechanism of formation of metal complexes. Adv. Chem. Ser. 1965, 49, 55.
| 1:CAS:528:DyaF28XisVyhsQ%3D%3D&md5=2633fe7a6b585196700ffb502d640598CAS |