Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Influence of the Mississippi River plume and non-bioavailable DMSP on dissolved DMSP turnover in the northern Gulf of Mexico

Jessie Motard-Côté A B D , David J. Kieber C , Allison Rellinger A B and Ronald P. Kiene A B
+ Author Affiliations
- Author Affiliations

A University of South Alabama, Department of Marine Sciences, 5871 USA Drive North, Mobile, AL 36688, USA.

B Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, AL 36528, USA.

C State University of New York, College of Environmental Science and Forestry, Department of Chemistry, 1 Forestry Drive, Syracuse, NY 13210, USA.

D Corresponding author. Email: jmotard-cote@disl.org

Environmental Chemistry 13(2) 280-292 https://doi.org/10.1071/EN15053
Submitted: 8 March 2015  Accepted: 27 September 2015   Published: 15 December 2015

Environmental context. Dimethylsulfoniopropionate (DMSP) comprises an important fraction of the organic carbon produced by phytoplankton, and is a major source of carbon and sulfur for heterotrophic bacteria. Here, we show that a non-bioavailable fraction of DMSP recently discovered in coastal waters also exists in oligotrophic open-ocean waters. Taking account of the non-bioavailable pool improved estimates of cycling rates of DMSP and its contribution to bacterial nutrition.

Abstract. Microbial cycling of dissolved dimethylsulfoniopropionate (DMSPd) and the fate of DMSP-sulfur were measured in the northern Gulf of Mexico off the Louisiana coast in September 2011 using the tracer 35S-DMSPd. Salinity ranged from 31.2 ppt in the Mississippi River plume to 36.5 ppt offshore. Total DMSP concentrations were significantly higher at the river-influenced stations (12–27 nM) than offshore (6–14 nM). From 8.7 to 27 % of the measured DMSPd, equivalent to 0.1 to 0.23 nM, was refractory (i.e. non-bioavailable). We subtracted refractory DMSPd from the measured DMSPd concentrations when calculating DMSPd consumption rates with the tracer 35S-DMSPd. DMSPd consumption and bacterial production were respectively 8 and 7 times higher in the river plume compared with offshore. Incorporation of DMSP-sulfur into biomass was almost three times higher in river-influenced water, whereas the dimethylsulfide (DMS) yield was 3.5 times lower in the river plume compared with offshore. Accordingly, DMSP contributed over 3 times more to the bacterial demand for both carbon and sulfur in the river-influenced water. Despite lower DMS yields in the river plume, the fast DMSP turnover resulted in a 2.7-times higher DMS production compared with offshore waters. Mississippi River inputs and the resulting high productivity led to a rapid turnover of DMSP and high DMS production in the river plume compared with oligotrophic Gulf of Mexico waters. Failure to account for refractory DMSPd when using the 35S-DMSP method will lead to significant overestimation of the DMSPd turnover flux and its contributions to C and S cycling.

Additional keywords: biogeochemistry, carbon substrate, filtration, microbial loop, organic matter, organic sulfur, refractory organic matter.


References

[1]  U. Karsten, C. Wiencke, G. O. Kirst, Dimethylsulphoniopropionate (DMSP) accumulation in green macroalgae from polar to temperate regions: interactive effects of light versus salinity and versus temperature. Polar Biol. 1992, 12, 603.
Dimethylsulphoniopropionate (DMSP) accumulation in green macroalgae from polar to temperate regions: interactive effects of light versus salinity and versus temperature.Crossref | GoogleScholarGoogle Scholar |

[2]  M. K. Nishiguchi, G. N. Somero, Temperature- and concentration-dependence of compatibility of the organic osmolyte β-dimethylsulfoniopropionate. Cryobiology 1992, 29, 118.
Temperature- and concentration-dependence of compatibility of the organic osmolyte β-dimethylsulfoniopropionate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitlWhtLs%3D&md5=9dc7820ffbda59f7981926310b242548CAS | 1295491PubMed |

[3]  G. O. Kirst, Osmotic adjustment in phytoplankton and macroalgae – The use of dimethylsulfoniopropionate (DMSP), in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (Eds R. Kiene, P. Visscher, M. Keller, G. Kirst) 1996, pp. 121–129 (Plenum: New York).

[4]  W. Sunda, D. J. Kieber, R. P. Kiene, S. Huntsman, An antioxidant function for DMSP and DMS in marine algae. Nature 2002, 418, 317.
An antioxidant function for DMSP and DMS in marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlGms7k%3D&md5=1bcaa8d9ca44d13d4f343901c31cbed2CAS | 12124622PubMed |

[5]  J. R. Seymour, R. Simó, T. Ahmed, R. Stocker, Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 2010, 329, 342.
Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosl2iu70%3D&md5=9160e8f0cec3e1f870bdb4bc1f5ff2baCAS | 20647471PubMed |

[6]  G. V. Wolfe, M. Steinke, G. O. Kirst, Grazing-activated chemical defense in a unicellular marine alga. Nature 1997, 387, 894.
Grazing-activated chemical defense in a unicellular marine alga.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkt1Grtrc%3D&md5=afe2a841f024b4d1154274828fab1137CAS |

[7]  J. Stefels, Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J. Sea Res. 2000, 43, 183.
Physiological aspects of the production and conversion of DMSP in marine algae and higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Wrtb4%3D&md5=23897818cf9950bd364d15554611ea98CAS |

[8]  J. Stefels, M. Steinke, S. Turner, G. Malin, S. Belviso, Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 2007, 83, 245.
Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlakt7s%3D&md5=e41afa264a0a44bd66f7dcc3f8a02455CAS |

[9]  P. A. Matrai, M. D. Keller, Total organic sulfur and dimethylsulfoniopropionate in marine phytoplankton – intracellular variations. Mar. Biol. 1994, 119, 61.
Total organic sulfur and dimethylsulfoniopropionate in marine phytoplankton – intracellular variations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtVSmsrg%3D&md5=b2c6f2176050259c253d480b67b6c1d0CAS |

[10]  E. C. Howard, J. R. Henriksen, A. Buchan, C. R. Reisch, H. Buergmann, R. Welsh, W. Y. Ye, J. M. González, K. Mace, S. B. Joye, R. P. Kiene, W. B. Whitman, M. A. Moran, Bacterial taxa that limit sulfur flux from the ocean. Science 2006, 314, 649.
Bacterial taxa that limit sulfur flux from the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeitr7M&md5=d02b3f54b8d92d215347f6b84a76dc59CAS | 17068264PubMed |

[11]  A. R. J. Curson, J. D. Todd, M. J. Sullivan, A. W. B. Johnston, Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat. Rev. Microbiol. 2011, 9, 849.
Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12iurbE&md5=93732fa0bab3056569bbfa8e8bbadc36CAS |

[12]  C. R. Reisch, M. A. Moran, W. B. Whitman, Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Front. Microbiol. 2011, 2, 1.
Bacterial catabolism of dimethylsulfoniopropionate (DMSP).Crossref | GoogleScholarGoogle Scholar |

[13]  J. E. Lovelock, R. J. Maggs, R. A. Rasmussen, Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature 1972, 237, 452.
Atmospheric dimethyl sulphide and the natural sulphur cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXisVOmug%3D%3D&md5=7be8d27e928b381ba820a3fe19947455CAS |

[14]  R. P. Kiene, T. S. Bates, Biological removal of dimethyl sulfide from seawater. Nature 1990, 345, 702.
Biological removal of dimethyl sulfide from seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltlyjur8%3D&md5=aa1f0e46c8cd4ad438333617b247b63fCAS |

[15]  R. Simó, From cells to globe: approaching the dynamics of DMS(P) in the ocean at multiple scales. Can. J. Fish. Aquat. Sci. 2004, 61, 673.
From cells to globe: approaching the dynamics of DMS(P) in the ocean at multiple scales.Crossref | GoogleScholarGoogle Scholar |

[16]  P. Brimblecombe, D. Shooter, Photooxidation of dimethylsulfide in aqueous solution. Mar. Chem. 1986, 19, 343.
Photooxidation of dimethylsulfide in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtFektbg%3D&md5=5ac34f8885cb9dcdc2e730c0df21c129CAS |

[17]  D. J. Kieber, J. F. Jiao, R. P. Kiene, T. S. Bates, Impact of dimethylsulfide photochemistry on methyl sulfur cycling in the equatorial Pacific Ocean. J. Geophys. Res. – Oceans 1996, 101, 3715.
Impact of dimethylsulfide photochemistry on methyl sulfur cycling in the equatorial Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhs1Kmsb4%3D&md5=d43eed37f39a248f3f3d5e48bad0be7eCAS |

[18]  J. M. González, R. P. Kiene, M. A. Moran, Transformation of sulfur compounds by an abundant lineage of marine bacteria in the α-subclass of the class Proteobacteria. Appl. Environ. Microbiol. 1999, 65, 3810.
| 10473380PubMed |

[19]  R. P. Kiene, L. J. Linn, J. M. González, M. A. Moran, J. A. Bruton, Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl. Environ. Microbiol. 1999, 65, 4549.
| 1:CAS:528:DyaK1MXms1Oitro%3D&md5=c0f9dc9c3f8951b78d1d03b07617b57dCAS | 10508088PubMed |

[20]  R. R. Malmstrom, R. P. Kiene, D. L. Kirchman, Identification and enumeration of bacteria assimilating dimethylsulfoniopropionate (DMSP) in the North Atlantic and Gulf of Mexico. Limnol. Oceanogr. 2004, 49, 597.
Identification and enumeration of bacteria assimilating dimethylsulfoniopropionate (DMSP) in the North Atlantic and Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFWnsrw%3D&md5=81599f3cff83d337c6f99e23c549dea2CAS |

[21]  M. Vila, R. Simó, R. P. Kiene, J. Pinhassi, J. M. González, M. A. Moran, C. Pedrós-Alió, Use of microautoradiography combined with fluorescence in situ hybridization to determine dimethylsulfoniopropionate incorporation by marine bacterioplankton taxa. Appl. Environ. Microbiol. 2004, 70, 4648.
Use of microautoradiography combined with fluorescence in situ hybridization to determine dimethylsulfoniopropionate incorporation by marine bacterioplankton taxa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1eltbk%3D&md5=c7560cd963631104dda8f15e2440ee19CAS | 15294798PubMed |

[22]  M. A. Moran, C. R. Reisch, R. P. Kiene, W. B. Whitman, Genomic insights into bacterial DMSP transformations. Annu. Rev. Mar. Sci. 2012, 4, 523.
Genomic insights into bacterial DMSP transformations.Crossref | GoogleScholarGoogle Scholar |

[23]  J. Motard-Côté, M. Levasseur, M. G. Scarratt, S. Michaud, Y. Gratton, R. B. Rivkin, K. Keats, M. Gosselin, J.-É. Tremblay, R. P. Kiene, C. Lovejoy, Distribution and metabolism of dimethylsulfoniopropionate (DMSP) and phylogenetic affiliation of DMSP-assimilating bacteria in northern Baffin Bay/Lancaster Sound. J. Geophys. Res. 2012, 117, C00G11.
Distribution and metabolism of dimethylsulfoniopropionate (DMSP) and phylogenetic affiliation of DMSP-assimilating bacteria in northern Baffin Bay/Lancaster Sound.Crossref | GoogleScholarGoogle Scholar |

[24]  R. P. Kiene, L. J. Linn, Distribution and turnover of dissolved DMSP and its relationship with bacterial production and dimethylsulfide in the Gulf of Mexico. Limnol. Oceanogr. 2000, 45, 849.
Distribution and turnover of dissolved DMSP and its relationship with bacterial production and dimethylsulfide in the Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslerurw%3D&md5=2c4c9a097c6fe991fcea8b2ab530dfc4CAS |

[25]  M. V. Zubkov, B. M. Fuchs, S. D. Archer, R. P. Kiene, R. Amann, P. H. Burkill, Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulfoniopropionate in an algal bloom in the North Sea. Environ. Microbiol. 2001, 3, 304.
Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulfoniopropionate in an algal bloom in the North Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1eht7o%3D&md5=56fb73e3cfeb2e09258afbfb238db71fCAS | 11422317PubMed |

[26]  R. Simó, S. D. Archer, C. Pedrós-Alió, L. Gilpin, C. E. Stelfox-Widdicombe, Coupled dynamics of dimethylsulfoniopropionate and dimethylsulfide cycling and the microbial food web in surface waters of the North Atlantic. Limnol. Oceanogr. 2002, 47, 53.
Coupled dynamics of dimethylsulfoniopropionate and dimethylsulfide cycling and the microbial food web in surface waters of the North Atlantic.Crossref | GoogleScholarGoogle Scholar |

[27]  R. P. Kiene, L. J. Linn, The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using 35S-DMSP. Geochim. Cosmochim. Acta 2000, 64, 2797.
The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using 35S-DMSP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVKktL8%3D&md5=0187e2eab0851b1bf8fc20c33d7c3f4bCAS |

[28]  D. Slezak, R. P. Kiene, D. A. Toole, R. Simó, D. J. Kieber, Effects of solar radiation on the fate of dissolved DMSP and conversion to DMS seawater. Aquat. Sci. 2007, 69, 377.
Effects of solar radiation on the fate of dissolved DMSP and conversion to DMS seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ajtrjE&md5=51283ff554b23394d2790b20e69b0889CAS |

[29]  M. Vila-Costa, R. Simó, L. Alonso-Sáez, C. Pedrós-Alió, Number and phylogenetic affiliation of bacteria assimilating dimethylsulfoniopropionate and leucine in the ice-covered coastal Arctic Ocean. J. Mar. Syst. 2008, 74, 957.
Number and phylogenetic affiliation of bacteria assimilating dimethylsulfoniopropionate and leucine in the ice-covered coastal Arctic Ocean.Crossref | GoogleScholarGoogle Scholar |

[30]  R. P. Kiene, L. J. Linn, J. A. Bruton, New and important roles for DMSP in marine microbial communities. J. Sea Res. 2000, 43, 209.
New and important roles for DMSP in marine microbial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Wrtbw%3D&md5=789cb96d8406d5bbead908e442a540f1CAS |

[31]  J. Pinhassi, R. Simó, J. M. González, M. Vila, L. Alonso-Sáez, R. P. Kiene, M. A. Moran, C. Pedrós-Alió, Dimethylsulfoniopropionate turnover is linked to the composition and dynamics of the bacterioplankton assemblage during a microcosm phytoplankton bloom. Appl. Environ. Microbiol. 2005, 71, 7650.
Dimethylsulfoniopropionate turnover is linked to the composition and dynamics of the bacterioplankton assemblage during a microcosm phytoplankton bloom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlehtL3I&md5=2e3b362564c875206655496feed9db66CAS | 16332737PubMed |

[32]  V. A. Varaljay, J. Robidart, C. M. Preston, S. M. Gifford, B. P. Durham, A. S. Burns, J. P. Ryan, R. Marin, R. P. Kiene, J. P. Zehr, C. A. Scholin, M. Ann Moran, Single-taxon field measurements of bacterial gene regulation controlling DMSP fate. ISME J. 2015, 9, 1677.
Single-taxon field measurements of bacterial gene regulation controlling DMSP fate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFOmt7nM&md5=2e52daf997b5e27251fca493375110b1CAS | 25700338PubMed |

[33]  R. P. Kiene, D. Slezak, Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling. Limnol. Oceanogr. 2006, 4, 80.
Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlWnt70%3D&md5=d76bee9995b6021df822bbc9b36611e1CAS |

[34]  C. Li, G.-p. Yang, D. J. Kieber, J. Motard-Côté, R. P. Kiene, Assessment of DMSP turnover reveals a non-bioavailable pool of dissolved DMSP in coastal waters of the Gulf of Mexico. Environ. Chem. 2015, [Published online 17 September 2015]
Assessment of DMSP turnover reveals a non-bioavailable pool of dissolved DMSP in coastal waters of the Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

[35]  J. D. Milliman, R. H. Meade, World-wide delivery of river sediment to the oceans. J. Geol. 1983, 91, 1.
World-wide delivery of river sediment to the oceans.Crossref | GoogleScholarGoogle Scholar |

[36]  S. E. Lohrenz, G. L. Fahnenstiel, D. G. Redalje, G. A. Lang, M. J. Dagg, T. E. Whitledge, Q. Dortch, Nutrients, irradiance, and mixing as factors regulating primary production in coastal waters impacted by the Mississippi River plume. Cont. Shelf Res. 1999, 19, 1113.
Nutrients, irradiance, and mixing as factors regulating primary production in coastal waters impacted by the Mississippi River plume.Crossref | GoogleScholarGoogle Scholar |

[37]  M. J. Dagg, G. A. Breed, Biological effects of Mississippi River nitrogen on the northern gulf of Mexico – a review and synthesis. J. Mar. Syst. 2003, 43, 133.
Biological effects of Mississippi River nitrogen on the northern gulf of Mexico – a review and synthesis.Crossref | GoogleScholarGoogle Scholar |

[38]  R. P. Kiene, Turnover of dissolved DMSP in estuarine and shelf waters of the northern Gulf of Mexico, in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (Eds R. Kiene, P. Visscher, M. Keller, G. Kirst) 1996, pp. 337–349 (Plenum: New York).

[39]  J. Motard-Côté, R. P. Kiene, Osmoprotective role of dimethylsulfoniopropionate (DMSP) for estuarine bacterioplankton. Aquat. Microb. Ecol. 2015, 76, 133.
Osmoprotective role of dimethylsulfoniopropionate (DMSP) for estuarine bacterioplankton.Crossref | GoogleScholarGoogle Scholar |

[40]  J. D. H. Strickland, T. R. Parsons, A Practical Handbook of Seawater Analysis. Bulletin 167 1972 (Fisheries Research Board of Canada: Ottawa, ON).

[41]  N. A. Welschmeyer, Fluorometric analysis of chlorophyll-a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 1994, 39, 1985.
Fluorometric analysis of chlorophyll-a in the presence of chlorophyll b and pheopigments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXks1Sru70%3D&md5=64375a1b027ff8b9a929173706603dedCAS |

[42]  S. Lee, Y.-C. Kang, J. A. Fuhrman, Imperfect retention of natural bacterioplankton cells by glass fiber filters. Mar. Ecol. Prog. Ser. 1995, 119, 285.
Imperfect retention of natural bacterioplankton cells by glass fiber filters.Crossref | GoogleScholarGoogle Scholar |

[43]  D. Kirchman, E. K’nees, R. Hodson, Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl. Environ. Microbiol. 1985, 49, 599.
| 1:CAS:528:DyaL2MXhsVGru7k%3D&md5=1fe501700cd141df52829727aa395733CAS | 3994368PubMed |

[44]  D. C. Smith, F. Azam, A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar. Microb. Food Webs 1992, 6, 107.

[45]  D. A. del Valle, D. J. Kieber, R. P. Kiene, Depth-dependent fate of biologically consumed dimethylsulfide in the Sargasso Sea. Mar. Chem. 2007, 103, 197.
Depth-dependent fate of biologically consumed dimethylsulfide in the Sargasso Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWqu7bM&md5=01050d3acaa6e6f446386eb91dce022dCAS |

[46]  M. Simon, F. Azam, Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 1989, 51, 201.
Protein content and protein synthesis rates of planktonic marine bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhvV2jsL8%3D&md5=3cbf2a544f2ffe723bcafa91cdcaf31dCAS |

[47]  H. Ducklow, Bacterial production and biomass in the oceans, in Microbial Ecology of the Oceans (Ed. D. L. Kirchman) 2000, pp. 85–120 (Wiley-Liss: New York).

[48]  P. A. del Giorgio, J. J. Cole, Bacterial growth efficiency in natural aquatic systems. Annu. Rev. Ecol. Syst. 1998, 29, 503.
Bacterial growth efficiency in natural aquatic systems.Crossref | GoogleScholarGoogle Scholar |

[49]  K. M. Fagerbakke, M. Heldal, S. Norland, Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat. Microb. Ecol. 1996, 10, 15.
Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria.Crossref | GoogleScholarGoogle Scholar |

[50]  N. Vinogradova, S. Vinogradov, D. Nechaev, V. Kamenkovich, A. F. Blumberg, Q. Ahsan, H. Li, Evaluation of the northern Gulf of Mexico littoral initiative model based on the observed temperature and salinity in the Mississippi Bight. Mar. Technol. Soc. J. 2005, 39, 25.
Evaluation of the northern Gulf of Mexico littoral initiative model based on the observed temperature and salinity in the Mississippi Bight.Crossref | GoogleScholarGoogle Scholar |

[51]  S. Chakraborty, S. E. Lohrenz, Phytoplankton community structure in the river-influenced continental margin of the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 2015, 521, 31.
Phytoplankton community structure in the river-influenced continental margin of the northern Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtlWitbs%3D&md5=c2a6af7729130e90468e08fbaea3aa34CAS |

[52]  L. Polimene, S. D. Archer, M. Butenschön, J. I. Allen, A mechanistic explanation of the Sargasso Sea DMS ‘summer paradox’. Biogeochemistry 2012, 110, 243.
A mechanistic explanation of the Sargasso Sea DMS ‘summer paradox’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjt7bJ&md5=26bb3e0b43de174eeac4ebba2dfab78eCAS |

[53]  C. S. Fortunato, L. Herfort, P. Zuber, A. M. Baptista, B. C. Crump, Spatial variability overwhelms seasonal patterns in bacterioplankton communities across a river to ocean gradient. ISME J. 2012, 6, 554.
Spatial variability overwhelms seasonal patterns in bacterioplankton communities across a river to ocean gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisVGgsbo%3D&md5=315f943180d78a495b44c8ae7b28737fCAS | 22011718PubMed |

[54]  R. Simó, M. Vila-Costa, L. Alonso-Sáez, C. Cardelús, Ò. Guadayol, E. Vázquez-Domínguez, J. M. Gasol, Annual DMSP contribution to S and C fluxes through phytoplankton and bacterioplankton in a NW Mediterranean coastal site. Aquat. Microb. Ecol. 2009, 57, 43.
Annual DMSP contribution to S and C fluxes through phytoplankton and bacterioplankton in a NW Mediterranean coastal site.Crossref | GoogleScholarGoogle Scholar |

[55]  R. R. Malmstrom, R. P. Kiene, M. Vila, D. L. Kirchman, Dimethylsulfoniopropionate (DMSP) assimilation by Synechococcus in the Gulf of Mexico and northwest Atlantic Ocean. Limnol. Oceanogr. 2005, 50, 1924.
Dimethylsulfoniopropionate (DMSP) assimilation by Synechococcus in the Gulf of Mexico and northwest Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWrsb7F&md5=34f0144c03ef36bce734f07335e43889CAS |

[56]  M. Vila-Costa, R. Simó, H. Harada, J. M. Gasol, D. Slezak, R. P. Kiene, Dimethylsulfoniopropionate uptake by marine phytoplankton. Science 2006, 314, 652.
Dimethylsulfoniopropionate uptake by marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 17068265PubMed |

[57]  J. M. Gasol, J. Pinhassi, L. Alonso-Sáez, H. Ducklow, G. J. Herndl, M. Koblížek, M. Labrenz, Y. Luo, X. A. G. Morán, T. Reinthaler, M. Simon, Towards a better understanding of the microbial carbon flux in the sea. Aquat. Microb. Ecol. 2008, 53, 21.
Towards a better understanding of the microbial carbon flux in the sea.Crossref | GoogleScholarGoogle Scholar |

[58]  L. Alonso-Sáez, J. Pinhassi, J. Pernthaler, J. M. Gasol, Leucine-to-carbon empirical conversion factor experiments: does bacterial community structure have an influence? Environ. Microbiol. 2010, 12, 2988.
Leucine-to-carbon empirical conversion factor experiments: does bacterial community structure have an influence?Crossref | GoogleScholarGoogle Scholar | 20561017PubMed |

[59]  L. Alonso-Sáez, E. Vázquez-Domínguez, C. Cardelús, J. Pinhassi, M. M. Sala, I. Lekunberri, V. Balagué, R. Simó, J. M. Gasol, Factors controlling the year-round variability in carbon flux through bacteria in a coastal marine system. Ecosystems 2008, 11, 397.
Factors controlling the year-round variability in carbon flux through bacteria in a coastal marine system.Crossref | GoogleScholarGoogle Scholar |

[60]  A. Calvó-Díaz, X. A. G. Morán, Empirical leucine-to-carbon conversion factors for estimating heterotrophic bacterial production: seasonality and predictability in a temperate coastal ecosystem. Appl. Environ. Microbiol. 2009, 75, 3216.
Empirical leucine-to-carbon conversion factors for estimating heterotrophic bacterial production: seasonality and predictability in a temperate coastal ecosystem.Crossref | GoogleScholarGoogle Scholar | 19304821PubMed |

[61]  X. A. G. Morán, H. W. Ducklow, M. Erickson, Carbon fluxes through estuarine bacteria reflect coupling with phytoplankton. Mar. Ecol. Prog. Ser. 2013, 489, 75.
Carbon fluxes through estuarine bacteria reflect coupling with phytoplankton.Crossref | GoogleScholarGoogle Scholar |

[62]  P. A. del Giorgio, J. J. Cole, Bacterial energetics and growth efficiency, in Microbial Ecology of the Oceans (Ed. D. L. Kirchman) 2000, pp. 289–326 (Wiley-Liss: New York).

[63]  T. Reinthaler, G. J. Herndl, Seasonal dynamics of bacterial growth efficiencies in relation to phytoplankton in the southern North Sea. Aquat. Microb. Ecol. 2005, 39, 7.
Seasonal dynamics of bacterial growth efficiencies in relation to phytoplankton in the southern North Sea.Crossref | GoogleScholarGoogle Scholar |

[64]  G. Chin-Leo, R. Benner, Enhanced bacterioplankton production and respiration at intermediate salinities in the Mississippi River plume. Mar. Ecol. Prog. Ser. 1992, 87, 87.
Enhanced bacterioplankton production and respiration at intermediate salinities in the Mississippi River plume.Crossref | GoogleScholarGoogle Scholar |

[65]  L. R. Pomeroy, J. E. Sheldon, W. M. J. Sheldon, F. Peters, Limits to growth and respiration of bacterioplankton in the Gulf of Mexico. Mar. Ecol. Prog. Ser. 1995, 117, 259.
Limits to growth and respiration of bacterioplankton in the Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

[66]  B. Biddanda, S. Opsahl, R. Benner, Plankton respiration and carbon flux through bacterioplankton on the Louisiana shelf. Limnol. Oceanogr. 1994, 39, 1259.
Plankton respiration and carbon flux through bacterioplankton on the Louisiana shelf.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlGmtrw%3D&md5=72a064c5a29732e225e113e774f87619CAS |