Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Effects of environmental changes, tissue types and reproduction on the emissions of dimethyl sulfide from seaweeds that form green tides

Kathryn L. Van Alstyne A B , Sue-Ann Gifford A , Jenna M. Dohman A and Monique M. Savedo A
+ Author Affiliations
- Author Affiliations

A Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Road, Anacortes, WA 98221, USA.

B Corresponding author. Email: kathy.vanalstyne@wwu.edu

Environmental Chemistry 13(2) 220-230 https://doi.org/10.1071/EN15037
Submitted: 24 February 2015  Accepted: 20 May 2015   Published: 17 September 2015

Environmental context. Dimethyl sulfide (DMS) is released by marine algae and is important to sulfur transfer between the oceans and the atmosphere. We measured DMS emissions from algae that form large blooms, and found that the hydration of the plants, seawater temperatures and salinity affect DMS release, but their effects were species-specific. Thus, the effect of algal blooms on sulfur transfer will depend on the bloom’s species composition and the environmental conditions experienced by the algae.

Abstract. Bloom-forming ulvoid macroalgae produce dimethylsulfoniopropionate (DMSP), which when cleaved in response to biotic and abiotic stresses results in the emission of dimethyl sulfide (DMS) into the atmosphere. We quantified DMS emission rates from three intertidal seaweeds (Ulva intestinalis, Ulva lactuca and Ulvaria obscura) that form green tide blooms in the Salish Sea. The algae were subjected to different salinities (freshwater to seawater), temperatures (15 to 35 °C) and desiccation levels, and DMS emission rates were measured. We also quantified tissue DMSP concentrations and DMS emissions by different life history stages of U. intestinalis. All three species had significantly higher emission rates if the plants were dry, relative to damp or submerged plants, with highest emissions in the high intertidal species and lowest emissions in the low intertidal species. Seawater temperature did not affect emission rates by U. intestinalis or U. lactuca, but emission rates by U. obscura were significantly higher at 35 °C. Hyposaline conditions also increased emission rates by U. obscura and U. lactuca but had no effect on emission by U. intestinalis. DMSP concentrations did not differ in sporophytes and gametophytes, but were twice as high in the tips as the bases of sporophytes. Most spores were released from the tips of the blades. Spores had average DMSP concentrations of 258 ± 114 fmol spore–1. Our results demonstrate that the amounts of DMS emitted by green tides will depend on the bloom’s species composition and the environmental conditions experienced by the algae.

Additional keywords: desiccation, dimethylsulfoniopropionate, gametophyte, life history, salinity, sporophyte, temperature, zoospore.


References

[1]  S. Wada, T. Hama, The contribution of macroalgae to the coastal dissolved organic matter pool. Estuar. Coast. Shelf Sci. 2013, 129, 77.
The contribution of macroalgae to the coastal dissolved organic matter pool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVensrzI&md5=18ffe06af2557b760f94ae46d3ef5f49CAS |

[2]  C. Barrón, E. T. Apostolaki, C. M. Duarte, Dissolved organic carbon fluxes by seagrass meadows and macroalgal beds. Front. Mar. Sci. 2014, 1, 42.

[3]  A. Nebbioso, A. Piccolo, Molecular characterization of dissolved organic matter (DOM): a critical review. Anal. Bioanal. Chem. 2013, 405, 109.
Molecular characterization of dissolved organic matter (DOM): a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlaiu7zF&md5=1e446258631db8a36f956647f34d92bfCAS | 22965531PubMed |

[4]  E. B. Kujawinski, The impact of microbial metabolism on marine dissolved organic matter. Annu. Rev. Mar. Sci. 2011, 3, 567.
The impact of microbial metabolism on marine dissolved organic matter.Crossref | GoogleScholarGoogle Scholar |

[5]  C. Paul, G. Pohnert, Production and role of volatile halogenated compounds from marine algae. Nat. Prod. Rep. 2011, 28, 186.
Production and role of volatile halogenated compounds from marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWisrg%3D&md5=aeb551123c725a3be66345aea7eb1be0CAS | 21125112PubMed |

[6]  P. Gschwend, J. MacFarlane, K. Newman, Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science 1985, 227, 1033.
Volatile halogenated organic compounds released to seawater from temperate marine macroalgae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhsFCnsrc%3D&md5=18174824e00a0911a3e756c90e0b947eCAS | 17794227PubMed |

[7]  Y. Akakabe, T. Kajiwara, Bioactive volatile compounds from marine algae: feeding attractants. J. Appl. Phycol. 2008, 20, 661.
Bioactive volatile compounds from marine algae: feeding attractants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWiu7%2FL&md5=af0ead65f4a34a57d06afa3fcd879177CAS |

[8]  K. L. Van Alstyne, G. V. Wolfe, T. L. Freidenburg, A. Neill, C. Hicken, Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar. Ecol. Prog. Ser. 2001, 213, 53.
Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFartrk%3D&md5=9e3f1b0c3dbd3f9ec733cd7788b1a964CAS |

[9]  K. L. Van Alstyne, L. T. Houser, Dimethylsulfide release during macroinvertebrate grazing and its role as an activated chemical defense. Mar. Ecol. Prog. Ser. 2003, 250, 175.
Dimethylsulfide release during macroinvertebrate grazing and its role as an activated chemical defense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1SgsbY%3D&md5=e0b986d3fdb3d99e26aa48369ecae13dCAS |

[10]  T. Wiesemeier, M. Hay, G. Pohnert, The potential role of wound-activated volatile release in the chemical defence of the brown alga Dictyota dichotoma: blend recognition by marine herbivores. Aquat. Sci. 2007, 69, 403.
The potential role of wound-activated volatile release in the chemical defence of the brown alga Dictyota dichotoma: blend recognition by marine herbivores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ajtrnP&md5=e4d12d3b55a0b9ec18f4062ff64349e6CAS |

[11]  G. Malin, The role of DMSP and DMS in the global sulfur cycle and climate regulation, in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (Eds R. P. Kiene, P. Visscher, M. Keller and G. O. Kirst) 1996, pp. 177–189 (Plenum Press: New York).

[12]  G. Malin, G. O. Kirst, Algal production of dimethyl sulfide and its atmospheric role. J. Phycol. 1997, 33, 889.
Algal production of dimethyl sulfide and its atmospheric role.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVykuw%3D%3D&md5=22a11004f2d8b654f262bf0166a82ec8CAS |

[13]  M. Steinke, G. Malin, P. Liss, Trophic interactions in the sea: an ecological role for climate-relevant volatiles. J. Phycol. 2002, 38, 630.
Trophic interactions in the sea: an ecological role for climate-relevant volatiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVCqsbk%3D&md5=a23a0fb93749dcbe764f8f3e973e894eCAS |

[14]  S. L. Shaw, B. Gantt, N. Meskhidze, Production and emissions of marine isoprene and monoterpenes: a review. Adv. Meteorol. 2010, 2010, 408696.
Production and emissions of marine isoprene and monoterpenes: a review.Crossref | GoogleScholarGoogle Scholar |

[15]  D. C. Yoch, Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl. Environ. Microbiol. 2002, 68, 5804.
Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptlarsL0%3D&md5=a542efd62fa02704a8a8e46f72af1d75CAS | 12450799PubMed |

[16]  J. Stefels, Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J. Sea Res. 2000, 43, 183.
Physiological aspects of the production and conversion of DMSP in marine algae and higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Wrtb4%3D&md5=23897818cf9950bd364d15554611ea98CAS |

[17]  M. Steinke, C. Daniel, G. O. Kirst, DMSP lyase in marine macro- and microalgae: intraspecific differences in cleavage activity, in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (Eds R. P. Kiene, P. Visscher, M. Keller, G. O. Kirst) 1996, pp. 317–323 (Plenum Press: New York).

[18]  M. Steinke, G. O. Kirst, Enzymatic cleavage of dimethylsulfoniopropionate (DMSP) in cell-free extracts of the marine macroalga Enteromorpha clathrata (Roth) Grev. (Ulvales, Chlorophyta). J. Exp. Mar. Biol. Ecol. 1996, 201, 73.
Enzymatic cleavage of dimethylsulfoniopropionate (DMSP) in cell-free extracts of the marine macroalga Enteromorpha clathrata (Roth) Grev. (Ulvales, Chlorophyta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsFWltr4%3D&md5=fa611b78d01ff0d63889f1ee9a7413d9CAS |

[19]  M. P. de Souza, Y. P. Chen, D. C. Yoch, Dimethylsulfoniopropionate lyase from the marine macroalga Ulva curvata: purification and characterization of the enzyme. Planta 1996, 199, 433.
Dimethylsulfoniopropionate lyase from the marine macroalga Ulva curvata: purification and characterization of the enzyme.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFGlt7c%3D&md5=d7fc16e84a3b30b543650b6e36c5c9c6CAS |

[20]  J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics 2006 (Wiley: Hoboken, NJ).

[21]  T. S. Bates, R. J. Charlson, R. H. Gammon, Evidence for climatic role of marine biogenic sulphur. Nature 1987, 329, 319.
Evidence for climatic role of marine biogenic sulphur.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtVals7c%3D&md5=ec15669bfb82a5d7b6a723fd77461523CAS |

[22]  P. Liss, A. Hatton, G. Malin, P. D. Nightingale, S. Turner, Marine sulfur emissions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1997, 352, 159.
Marine sulfur emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis12hsLk%3D&md5=5a3e54cffc058066e1c13d5e90290717CAS |

[23]  R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987, 326, 655.
Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVWgsb8%3D&md5=24299dba1956a59c2726d9e91321070cCAS |

[24]  P. V. Hobbs, L. Radke, S. Shumway, Cloud condensation nuclei from industrial sources and their apparent influence on precipitation in Washington State. J. Atmos. Sci. 1970, 27, 81.
Cloud condensation nuclei from industrial sources and their apparent influence on precipitation in Washington State.Crossref | GoogleScholarGoogle Scholar |

[25]  D. Spracklen, K. Carslaw, U. Pöschl, A. Rap, P. Forster, Global cloud condensation nuclei influenced by carbonaceous combustion aerosol. Atmos. Chem. Phys. 2011, 11, 9067.
Global cloud condensation nuclei influenced by carbonaceous combustion aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyju7fP&md5=be9567a6b9c3623853f87d031b277792CAS |

[26]  R. Simó, Production of atmospheric sulfur by oceanic plankton: biochemical, ecological, and evolutionary links. Trends Ecol. Evol. 2001, 16, 287.
Production of atmospheric sulfur by oceanic plankton: biochemical, ecological, and evolutionary links.Crossref | GoogleScholarGoogle Scholar | 11369106PubMed |

[27]  S. A. Van Bergeijk, C. Van der Zee, L. J. Stal, Uptake and excretion of dimethylsulphoniopropionate is driven by salinity changes in the marine benthic diatom Cylindrotheca closterium. Eur. J. Phycol. 2003, 38, 341.
Uptake and excretion of dimethylsulphoniopropionate is driven by salinity changes in the marine benthic diatom Cylindrotheca closterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVagtr4%3D&md5=32a2aa53b3d872359462f57220ef75b7CAS |

[28]  H. M. Jonkers, G. F. Koopmans, H. van Gemerden, Dynamics of dimethyl sulfide in a marine microbial mat. Microb. Ecol. 1998, 36, 93.
Dynamics of dimethyl sulfide in a marine microbial mat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksVOqu7c%3D&md5=461caee6666f49b70f47424dcd7db72eCAS | 9622568PubMed |

[29]  S. M. Turner, G. Malin, P. S. Liss, D. S. Harbour, P. M. Holligan, The seasonal variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in near-shore waters. Limnol. Oceanogr. 1988, 33, 364.
The seasonal variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in near-shore waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvFygt7s%3D&md5=deae18f647e05dba7cb4a990e561c36dCAS |

[30]  K. L. Van Alstyne, V. I. Dominique, G. Muller-Parker, Is dimethylsulfoniopropionate (DMSP) produced by the symbionts or the host in an anemone–zooxanthella symbiosis? Coral Reefs 2009, 28, 167.
Is dimethylsulfoniopropionate (DMSP) produced by the symbionts or the host in an anemone–zooxanthella symbiosis?Crossref | GoogleScholarGoogle Scholar |

[31]  A. Broadbent, G. Jones, R. Jones, DMSP in corals and benthic algae from the Great Barrier Reef. Estuar. Coast. Shelf Sci. 2002, 55, 547.
DMSP in corals and benthic algae from the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1Kmsbs%3D&md5=070e582236c54ed605e704f487a7d2d9CAS |

[32]  R. W. Hill, J. W. H. Dacey, A. Edward, Dimethylsulfoniopropionate in giant clams (Tridacnidae). Biol. Bull. 2000, 199, 108.
Dimethylsulfoniopropionate in giant clams (Tridacnidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1amsr0%3D&md5=50a42f6f18b0ff0bbe8dd323a1239bf3CAS | 11081709PubMed |

[33]  J.-B. Raina, D. M. Tapiolas, S. Forêt, A. Lutz, D. Abrego, J. Ceh, F. O. Seneca, P. L. Clode, D. G. Bourne, B. L. Willis, C. A. Motti, DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature 2013, 502, 677.
DMSP biosynthesis by an animal and its role in coral thermal stress response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs12ksL%2FN&md5=54e55bace7bdd8180dd2edcf2cee3f33CAS | 24153189PubMed |

[34]  K. L. Van Alstyne, M. P. Puglisi, DMSP in marine macroalgae and macroinvertebrates: distribution, function, and ecological impacts. Aquat. Sci. 2007, 69, 394.
DMSP in marine macroalgae and macroinvertebrates: distribution, function, and ecological impacts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ajtrnN&md5=8f9ac35f6896c911b6594170d0146411CAS |

[35]  K. L. Van Alstyne, T. A. Nelson, R. L. Ridgway, The environmental chemistry and chemical ecology of green tides. Integr. Comp. Biol. 2015, in press
The environmental chemistry and chemical ecology of green tides.Crossref | GoogleScholarGoogle Scholar | 25972565PubMed |

[36]  K. L. Van Alstyne, Ecological and physiological roles of dimethylsulfoniopropionate (DMSP) and its products in marine macroalgae, in Algal Chemical Ecology (Ed. C. D. Amsler) 2008, pp. 173–194 (Springer: Heidelberg, Germany).

[37]  K. L. Van Alstyne, K. N. Pelletreau, K. Rosario, The effects of salinity on dimethylsulfoniopropionate production in the green alga Ulva fenestrata Postels et Ruprecht (Chlorophyta). Bot. Mar. 2003, 46, 350.
The effects of salinity on dimethylsulfoniopropionate production in the green alga Ulva fenestrata Postels et Ruprecht (Chlorophyta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvF2ku7g%3D&md5=5987ded68804d23d0e4b749186e41693CAS |

[38]  C. Ross, K. L. Van Alstyne, Intraspecific variation in stress-induced hydrogen peroxide scavenging by the ulvoid macroalga Ulva lactuca. J. Phycol. 2007, 43, 466.
Intraspecific variation in stress-induced hydrogen peroxide scavenging by the ulvoid macroalga Ulva lactuca.Crossref | GoogleScholarGoogle Scholar |

[39]  P. Kerrison, D. J. Suggett, L. J. Hepburn, M. Steinke, Effect of elevated pCO2 on the production of dimethylsulphoniopropionate (DMSP) and dimethylsulphide (DMS) in two species of Ulva (Chlorophyceae). Biogeochemistry 2012, 110, 5.
Effect of elevated pCO2 on the production of dimethylsulphoniopropionate (DMSP) and dimethylsulphide (DMS) in two species of Ulva (Chlorophyceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjt7vI&md5=2ff93f201bf8005cd3790b1306e3c9e9CAS |

[40]  I. Valiela, J. McClelland, J. Hauxwell, P. Behr, D. Hersh, K. Foreman, Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr. 1997, 42, 1105.
Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences.Crossref | GoogleScholarGoogle Scholar |

[41]  V. Smetacek, A. Zingone, Green and golden seaweed tides on the rise. Nature 2013, 504, 84.
Green and golden seaweed tides on the rise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVyisb3N&md5=bb8eb09dba5f85aed2fd2991101aac4eCAS | 24305152PubMed |

[42]  N. H. Ye, X. W. Zhang, Y. Z. Mao, C. W. Liang, D. Xu, J. Zou, Z. Zhuang, Q. Wang, ‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example. Ecol. Res. 2011, 26, 477.
‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example.Crossref | GoogleScholarGoogle Scholar |

[43]  F. Leliaert, X. W. Zhang, N. H. Ye, E. Malta, A. H. Engelen, F. Mineur, H. Verbruggen, O. De Clerck, Research note: identity of the Qingdao algal bloom. Phycol. Res. 2009, 57, 147.

[44]  R. Charlier, P. Morand, C. Finkl, A. Thys, Green tides on the Brittany coasts. Environ. Res. Engineer. Manag. 2007, 3, 52.

[45]  T. A. Nelson, J. Olson, L. Imhoff, Using underwater video analysis to determine ulvoid cover and overlap with eelgrass over a regional scale, in Proceedings of the 2009 Puget Sound Georgia Basin Ecosystem Conference, 8–11 February 2009, Seattle, WA 2009. Available at http://depts.washington.edu/uwconf/psgb/proceedings/papers/8C_Nelso.pdf [Verified 17 July 2015].

[46]  H. S. Hayden, J. R. Waaland, Green macroalgae in estuaries of Puget Sound and the Strait of Georgia: a comparison of species assemblages 1999 (Washington State Department of Ecology, Padilla Bay National Estuarine Research Reserve: Mount Vernon, WA). Available at http://www.padillabay.gov/pdfs/Tech22.pdf [Verified 16 July 2015].

[47]  T. A. Nelson, K. Haberlin, A. V. Nelson, H. Ribarich, R. Hotchkiss, K. L. Van Alstyne, L. Buckingham, D. J. Simunds, K. Fredrickson, Ecological and physiological controls of species composition in green macroalgal blooms. Ecology 2008, 89, 1287.
Ecological and physiological controls of species composition in green macroalgal blooms.Crossref | GoogleScholarGoogle Scholar | 18543622PubMed |

[48]  R. Thomson, Oceanography of the British Columbia Coast 1981 (Department of Fisheries and Oceans: Ottawa, ON).

[49]  T. A. Nelson, A. V. Nelson, M. Tjoelker, Seasonal and spatial patterns of ‘green tides’ (ulvoid algal blooms) and related water-quality parameters in the coastal waters of Washington State, USA. Bot. Mar. 2003, 46, 263.
Seasonal and spatial patterns of ‘green tides’ (ulvoid algal blooms) and related water-quality parameters in the coastal waters of Washington State, USA.Crossref | GoogleScholarGoogle Scholar |

[50]  L. E. Graham, L. W. Wilcox, Algae 1999 (Prentice Hall: Upper Saddle River, NJ).

[51]  G. Smith, On the reproduction of some Pacific coast species of Ulva. Am. J. Bot. 1947, 34, 80.
On the reproduction of some Pacific coast species of Ulva.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaH2s%2FkslygsA%3D%3D&md5=2d9a967f0f2450fd5560a221772eb511CAS | 20286318PubMed |

[52]  K. L. Van Alstyne, T. K. Olson, Estimating variation in surface emissivities of intertidal macroalgae using an infrared thermometer and the effects on temperature measurements. Mar. Biol. 2014, 161, 1409.
Estimating variation in surface emissivities of intertidal macroalgae using an infrared thermometer and the effects on temperature measurements.Crossref | GoogleScholarGoogle Scholar | 24882885PubMed |

[53]  K. L. Van Alstyne, L. Koellermeier, T. Nelson, Spatial variation in dimethylsulfoniopropionate (DMSP) production in Ulva lactuca (Chlorophyta) from the north-east Pacific. Mar. Biol. 2007, 150, 1127.
Spatial variation in dimethylsulfoniopropionate (DMSP) production in Ulva lactuca (Chlorophyta) from the north-east Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVGqu7g%3D&md5=e6e89932298c39a7893d90fc612fe0a2CAS |

[54]  Y. Hochberg, A sharper Bonferroni procedure for multiple tests of significance. Biometrika 1988, 75, 800.
A sharper Bonferroni procedure for multiple tests of significance.Crossref | GoogleScholarGoogle Scholar |

[55]  R. Anderson, J. Berges, P. Harrison, M. Watanabe, Recipes for freshwater and seawater media, in Algal Culturing Techniques (Ed. R. Anderson) 2005, pp. 429–543 (Elsevier Academic Press: Amsterdam).

[56]  U. Karsten, C. Wiencke, G. O. Kirst, The effect of light intensity and daylength on the β-dimethylsulphoniopropionate (DMSP) content of the marine macroalgae from Antarctica. Plant Cell Environ. 1990, 13, 989.
The effect of light intensity and daylength on the β-dimethylsulphoniopropionate (DMSP) content of the marine macroalgae from Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsl2gs70%3D&md5=c3db34d9122029a8f84c7fc91ce222dcCAS |

[57]  U. Karsten, C. Wiencke, G. O. Kirst, Growth pattern and β-dimethylsulfoniopropionate (DMSP) content of marine macroalgae at different irradiances. Mar. Biol. 1991, 108, 151.
Growth pattern and β-dimethylsulfoniopropionate (DMSP) content of marine macroalgae at different irradiances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXks1ygurk%3D&md5=7420574889d7b2907f744244f7f2ced0CAS |

[58]  U. Karsten, C. Wiencke, G. O. Kirst, Dimethylsulphoniopropionate (DMSP) accumulation in green macroalgae from polar to temperate regions: interactive effects of light versus salinity and light versus temperature. Polar Biol. 1992, 12, 603.
Dimethylsulphoniopropionate (DMSP) accumulation in green macroalgae from polar to temperate regions: interactive effects of light versus salinity and light versus temperature.Crossref | GoogleScholarGoogle Scholar |

[59]  D. Lyons, R. Scheibling, K. L. Van Alstyne, Spatial and temporal variation in DMSP content in the invasive seaweed Codium fragile ssp. fragile: effects of temperature, light, and grazing. Mar. Ecol. Prog. Ser. 2010, 417, 51.
Spatial and temporal variation in DMSP content in the invasive seaweed Codium fragile ssp. fragile: effects of temperature, light, and grazing.Crossref | GoogleScholarGoogle Scholar |

[60]  R. H. Reed, L. Moffat, Copper toxicity and copper tolerance in Enteromorpha compressa (L.) Grev. J. Exp. Mar. Biol. Ecol. 1983, 69, 85.
Copper toxicity and copper tolerance in Enteromorpha compressa (L.) Grev.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktlCnsLg%3D&md5=1e9af117fddff312876f3e4a908d2d3aCAS |

[61]  K. L. Van Alstyne, K. N. Pelletreau, A. Kirby, Nutritional preferences override chemical defenses in determining food choice by a generalist herbivore, Littorina sitkana. J. Exp. Mar. Biol. Ecol. 2009, 379, 85.
Nutritional preferences override chemical defenses in determining food choice by a generalist herbivore, Littorina sitkana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyhtLbF&md5=15ba8530f30a455d718edbc05b5e5b9cCAS |

[62]  I. Plettner, M. Steinke, G. Malin, Ethene (ethylene) production in the marine macroalga Ulva (Enteromorpha) intestinalis L. (Chlorophyta, Ulvophyceae): effect of light-stress and co-production with dimethyl sulphide. Plant Cell Environ. 2005, 28, 1136.
Ethene (ethylene) production in the marine macroalga Ulva (Enteromorpha) intestinalis L. (Chlorophyta, Ulvophyceae): effect of light-stress and co-production with dimethyl sulphide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGltrfO&md5=1ce77154da95941b3a96e096524318f3CAS |

[63]  F. Laturnus, C. Wiencke, F. C. Adams, Influence of light conditions on the release of volatile halocarbons by Antarctic macroalgae. Mar. Environ. Res. 1998, 45, 285.
Influence of light conditions on the release of volatile halocarbons by Antarctic macroalgae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVWntrY%3D&md5=d5c9489c2d52ed6e9180fbd4ccce67f7CAS |

[64]  E. Leedham Elvidge, S.-M. Phang, W. Sturges, G. Malin, The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalgae. Biogeosci. Disc. 2014, 11, 10673.
The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalgae.Crossref | GoogleScholarGoogle Scholar |

[65]  R. P. Kiene, Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater samples and bacterial cultures. Appl. Environ. Microbiol. 1990, 56, 3292.
| 1:CAS:528:DyaK3MXivFKquw%3D%3D&md5=064712f8f21d23c4671fe26c7032a036CAS | 16348336PubMed |

[66]  D. Rao, J. S. Webb, C. Holmstrom, R. Case, A. Low, P. Steinberg, S. Kjelleberg, Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms. Appl. Environ. Microbiol. 2007, 73, 7844.
Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlah&md5=b3ec1e07e89ec29cc14acb2bcebf561aCAS | 17965210PubMed |

[67]  I. R. Davison, G. A. Pearson, Stress tolerance in intertidal seaweeds. J. Phycol. 1996, 32, 197.
Stress tolerance in intertidal seaweeds.Crossref | GoogleScholarGoogle Scholar |

[68]  M. Dring, Stress resistance and disease resistance in seaweeds: the role of reactive oxygen metabolism. Adv. Bot. Res. 2005, 43, 175.
Stress resistance and disease resistance in seaweeds: the role of reactive oxygen metabolism.Crossref | GoogleScholarGoogle Scholar |

[69]  M. Lesser, Oxidative stress in marine environments: biochemistry and physiological ecology. Annu. Rev. Physiol. 2006, 68, 253.
Oxidative stress in marine environments: biochemistry and physiological ecology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFWksrY%3D&md5=6d166404706e2dca551f8a0628e763afCAS | 16460273PubMed |

[70]  I. Fridovich, The biology of oxygen radicals. Science 1978, 201, 875.
The biology of oxygen radicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlvFart7g%3D&md5=1caf6da857aa84e1493798d515687fa5CAS | 210504PubMed |

[71]  K. Asada, M. Takahashi, Production and scavenging of active oxygen in photosynthesis, in Photoinhibition (Eds D. Kyle, C. Osmond and C. Amtzen) 1987, pp. 227–287 (Elsevier: Amsterdam).

[72]  W. Sunda, D. J. Kieber, R. P. Kiene, S. Huntsman, An antioxidant function for DMSP and DMS in marine algae. Nature 2002, 418, 317.
An antioxidant function for DMSP and DMS in marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlGms7k%3D&md5=1bcaa8d9ca44d13d4f343901c31cbed2CAS | 12124622PubMed |

[73]  D. van Hees, K. Van Alstyne, Effects of emersion, temperature, dopamine, and hypoxia on extracellular oxidant accumulations surrounding the bloom-forming seaweeds Ulva lactuca and Ulvaria obscura. J. Exp. Mar. Biol. Ecol. 2013, 448, 207.
Effects of emersion, temperature, dopamine, and hypoxia on extracellular oxidant accumulations surrounding the bloom-forming seaweeds Ulva lactuca and Ulvaria obscura.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVylsLrF&md5=92a001534b2e785a1897e0461f03ee0cCAS |

[74]  J. D. Pringle, Swarmers release and distribution of life-cycle phases of Enteromorpha intestinalis (L.) (Chlorophyta) in relation to environmental factors. J. Exp. Mar. Biol. Ecol. 1986, 100, 97.
Swarmers release and distribution of life-cycle phases of Enteromorpha intestinalis (L.) (Chlorophyta) in relation to environmental factors.Crossref | GoogleScholarGoogle Scholar |

[75]  J. Lubchenco, J. Cubit, Heteromorphic life histories of certain marine algae as adaptations to variations in herbivory. Ecology 1980, 61, 676.
Heteromorphic life histories of certain marine algae as adaptations to variations in herbivory.Crossref | GoogleScholarGoogle Scholar |

[76]  M. M. Littler, D. S. Littler, Heteromorphic life‐history strategies in the brown alga Scytosiphon lomentaria (Lyngb.) Link. J. Phycol. 1983, 19, 425.
Heteromorphic life‐history strategies in the brown alga Scytosiphon lomentaria (Lyngb.) Link.Crossref | GoogleScholarGoogle Scholar |

[77]  J. L. Fierst, J. E. Kübler, S. R. Dudgeon, Spatial distribution and reproductive phenology of sexual and asexual Mastocarpus papillatus (Rhodophyta). Phycologia 2010, 49, 274.
Spatial distribution and reproductive phenology of sexual and asexual Mastocarpus papillatus (Rhodophyta).Crossref | GoogleScholarGoogle Scholar | 20802792PubMed |

[78]  M. N. Dethier, Heteromorphic algal life histories: the seasonal pattern and response to herbivory of the brown crust, Ralfsia californica. Oecologia 1981, 49, 333.
Heteromorphic algal life histories: the seasonal pattern and response to herbivory of the brown crust, Ralfsia californica.Crossref | GoogleScholarGoogle Scholar |

[79]  C. S. Thornber, Functional properties of the isomorphic biphasic algal life cycle. Integr. Comp. Biol. 2006, 46, 605.
Functional properties of the isomorphic biphasic algal life cycle.Crossref | GoogleScholarGoogle Scholar | 21672771PubMed |

[80]  C. Thornber, J. J. Stachowicz, S. Gaines, Tissue type matters: selective herbivory on different life history stages of an isomorphic alga. Ecology 2006, 87, 2255.
Tissue type matters: selective herbivory on different life history stages of an isomorphic alga.Crossref | GoogleScholarGoogle Scholar | 16995626PubMed |

[81]  G. Cronin, M. E. Hay, Chemical defenses, protein content, and susceptibility to herbivory of diploid vs. haploid stages of the isomorphic brown alga Dictyota ciliolata (Phaeophyta). Bot. Mar. 1996, 39, 395.
Chemical defenses, protein content, and susceptibility to herbivory of diploid vs. haploid stages of the isomorphic brown alga Dictyota ciliolata (Phaeophyta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltlCgtrk%3D&md5=b5a296ed4794182ad23c5b7d47a44323CAS |

[82]  K. L. Van Alstyne, S. L. Whitman, J. M. Ehlig, Differences in herbivore preferences, phlorotannin production, and nutritional quality between juvenile and adult tissues from marine brown algae. Mar. Biol. 2001, 139, 201.
Differences in herbivore preferences, phlorotannin production, and nutritional quality between juvenile and adult tissues from marine brown algae.Crossref | GoogleScholarGoogle Scholar |

[83]  H. Pavia, G. B. Toth, A. Lindgren, P. Åberg, Intraspecific variation in the phlorotannin content of the brown alga Ascophyllum nodosum. Phycologia 2003, 42, 378.
Intraspecific variation in the phlorotannin content of the brown alga Ascophyllum nodosum.Crossref | GoogleScholarGoogle Scholar |

[84]  V. J. Paul, K. L. Van Alstyne, Chemical defense and chemical variation in some tropical Pacific species of Halimeda (Halimediaceae; Chlorophyta). Coral Reefs 1988, 6, 263.
Chemical defense and chemical variation in some tropical Pacific species of Halimeda (Halimediaceae; Chlorophyta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXls1Oht7Y%3D&md5=7ab5323c277ec9fd6c67ca04f2d17a88CAS |

[85]  M. E. Hay, V. J. Paul, S. M. Lewis, K. Gustafson, J. Tucker, R. N. Trindell, Can tropical seaweeds reduce herbivory by growing at night? Diet patterns of growth, nitrogen content, herbivory, and chemical versus morphological defenses. Oecologia 1988, 75, 233.
Can tropical seaweeds reduce herbivory by growing at night? Diet patterns of growth, nitrogen content, herbivory, and chemical versus morphological defenses.Crossref | GoogleScholarGoogle Scholar |

[86]  K. L. Van Alstyne, M. N. Dethier, D. O. Duggins, Spatial patterns in macroalgal chemical defenses, in Marine Chemical Ecology (Eds J. McClintock, W. Baker) 2001, pp. 301–324 (CRC Press: Boca Raton, FL).

[87]  K. L. Van Alstyne, P. Schupp, M. Slattery, The distribution of dimethylsulfoniopropionate (DMSP) in tropical Pacific coral reef invertebrates. Coral Reefs 2006, 25, 321.
The distribution of dimethylsulfoniopropionate (DMSP) in tropical Pacific coral reef invertebrates.Crossref | GoogleScholarGoogle Scholar |

[88]  R. W. Hill, J. W. H. Dacey, D. A. Krupp, Dimethylsulfoniopropionate in reef corals. Bull. Mar. Sci. 1995, 57, 489.

[89]  M. Steinke, G. V. Wolfe, G. O. Kirst, Partial characterisation of dimethylsulfoniopropionate (DMSP) lyase isozymes in 6 strains of Emiliania huxleyi. Mar. Ecol. Prog. Ser. 1998, 175, 215.
Partial characterisation of dimethylsulfoniopropionate (DMSP) lyase isozymes in 6 strains of Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlyiuw%3D%3D&md5=2ca9afc04839ea1310498f26f8583b55CAS |

[90]  M. D. Keller, Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biol. Oceanogr. 1989, 6, 375.

[91]  S. Strom, G. V. Wolfe, A. Slajer, S. Lambert, J. Clough, Chemical defense in the microplankton. II: Inhibition of protist feeding by β-dimethylsulfoniopropionate (DMSP). Limnol. Oceanogr. 2003, 48, 230.
Chemical defense in the microplankton. II: Inhibition of protist feeding by β-dimethylsulfoniopropionate (DMSP).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVGrurk%3D&md5=e5ea46aaf4035f67e08621ea3dc217aaCAS |

[92]  G. Kirst, Salinity tolerance of eukaryotic marine algae. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 21.

[93]  D. Welsh, Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol. Rev. 2000, 24, 263.
Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjslOru7Y%3D&md5=358a169cf656df1eccfdd8fb755def5fCAS | 10841973PubMed |

[94]  J. Collén, I. Davison, Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Chondrus crispus. Plant Cell Environ. 1999, 22, 1143.
Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Chondrus crispus.Crossref | GoogleScholarGoogle Scholar |

[95]  D. T. Welsh, P. Viaroli, W. D. Hamilton, T. M. Lenton, Is DMSP synthesis in chlorophycean macro-algae linked to aerial dispersal? Ethol. Ecol. Evol. 1999, 11, 265.
Is DMSP synthesis in chlorophycean macro-algae linked to aerial dispersal?Crossref | GoogleScholarGoogle Scholar |

[96]  G. Frankenstein, Blooms of Ulvoids in Puget Sound 2000 (Puget Sound Water Quality Action Team: Olympia, WA).

[97]  The Green Tide Monitor 2011 (City of Federal Way: Federal Way, WA). Available at http://www.cityoffederalway.com/DocumentCenter/Home/View/1436 [Verified 1 February 2015].

[98]  N. Gypens, A. V. Borges, Increase in dimethylsulfide (DMS) emissions due to eutrophication of coastal waters offsets their reduction due to ocean acidification. Front. Mat. Sci. 2014, 1, 4.

[99]  J. M. Gonzalez, R. P. Kiene, M. A. Moran, Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria. Appl. Environ. Microbiol. 1999, 65, 3810.
| 1:CAS:528:DyaK1MXlvFeqt74%3D&md5=9b3e07746733ac9ac47fc28287db4592CAS | 10473380PubMed |

[100]  G. V. Wolfe, M. Levasseur, G. Cantin, S. Michaud, Microbial consumption and production of dimethyl sulfide (DMS) in the Labrador Sea. Aquat. Microb. Ecol. 1999, 18, 197.
Microbial consumption and production of dimethyl sulfide (DMS) in the Labrador Sea.Crossref | GoogleScholarGoogle Scholar |

[101]  G. Jones, A. Trevena, The influence of coral reefs on atmospheric dimethylslphide over the Great Barrier Reef, Coral Sea, Gulf of Papua and Solomon and Bismark Seas. Mar. Freshwater Res. 2005, 56, 85.
The influence of coral reefs on atmospheric dimethylslphide over the Great Barrier Reef, Coral Sea, Gulf of Papua and Solomon and Bismark Seas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslSkuw%3D%3D&md5=385f4b8b6e67598d6555d550f90cb934CAS |

[102]  R. M. Harrison, D. B. Nedwell, M. T. Shabeer, Factors influencing the atmospheric flux of reduced sulfur compounds from North Sea intertidal areas. Atmos. Environ. 1992, 26, 2381.
Factors influencing the atmospheric flux of reduced sulfur compounds from North Sea intertidal areas.Crossref | GoogleScholarGoogle Scholar |

[103]  B. Jorgensen, B. Okholm-Hansen, Emissions of biogenic sulfur gases from a Danish estuary. Atmos. Environ. 1985, 19, 1737.
Emissions of biogenic sulfur gases from a Danish estuary.Crossref | GoogleScholarGoogle Scholar |

[104]  T. S. Bates, B. Lamb, A. Guenther, J. Dignon, R. Stoiber, Sulfur emissions to the atmosphere from natural sources. J. Atmos. Chem. 1992, 14, 315.
Sulfur emissions to the atmosphere from natural sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksFalu78%3D&md5=e78bc2456d6d10c150c515242e621324CAS |

[105]  P. A. Steudler, B. J. Peterson, Annual cycle of gaseous sulfur emissions from a New England Spartina alterniflora marsh. Atmos. Environ. 1985, 19, 1411.
Annual cycle of gaseous sulfur emissions from a New England Spartina alterniflora marsh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFWisb8%3D&md5=0479aaeafe0d7749954eec50ee3a73ffCAS |