Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Dissolution of mixed amorphous–crystalline Cd-containing Fe coprecipitates in the presence of common organic ligands

Carla E. Rosenfeld A C and Carmen E. Martínez A B
+ Author Affiliations
- Author Affiliations

A Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, 16802, USA.

B Present address: Soil and Crop Sciences Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA.

C Corresponding author. Present address: Department of Mineral Sciences, Smithsonian Institution, PO Box 37012, MRC 119 Washington, DC 20013-7012, USA. Email: rosenfeldc@si.edu

Environmental Chemistry 12(6) 739-747 https://doi.org/10.1071/EN14223
Submitted: 12 October 2014  Accepted: 16 February 2015   Published: 1 June 2015

Environmental context. Common soil minerals, which often contain trace metals in contaminated environments, are thought to limit metal-related risks in the environment. We studied the stability of these contaminated minerals and found that the presence of plant-derived organic compounds can alter contaminant availability in such environments. Understanding how soluble organics may change trace metal availability helps to predict risk and potentially remediate such environments more efficiently.

Abstract. Trace metals are common impurities in Fe oxides in soils and can be liberated by organic compounds in the soil. Impurities can also alter and potentially destabilise mineral structures by increasing amorphous or nanocrystalline components. Two Fe oxides found in smelter-contaminated soils, goethite (α-FeOOH) and franklinite (ZnFe2O4), were synthesised as coprecipitates with Cd and subjected to dissolution using oxalic acid, citric acid, cysteine and histidine. Substantial quantities of amorphous- (10–60 % of total) and surface-associated Cd (5–70 % of total) were present in all coprecipitates. Histidine and oxalic acid consistently enhanced, while cysteine inhibited, Cd release from all coprecipitated minerals. Mixed amorphous–crystalline mineral aggregations are common in natural soils, and must be further studied to understand their role in contaminant availability. In addition, Fe oxides, often considered sinks for toxic metals, may be less effective at reducing contaminant mobility and bioavailability in biologically active soils.


References

[1]  Chaney R. L., Cadmium and zinc, in Trace Elements in Soils (Ed. P. S. Hooda) 2010, pp. 409–440 (Wiley: Chichester, UK).

[2]  V. Autier, D. White, Examination of cadmium sorption characteristics for a boreal soil near Fairbanks, Alaska. J. Hazard. Mater. 2004, 106, 149.
Examination of cadmium sorption characteristics for a boreal soil near Fairbanks, Alaska.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVeltrc%3D&md5=03f45d855ec81fec2e713ed548faaefaCAS | 15177104PubMed |

[3]  P. Das, S. Samantaray, G. R. Rout, Studies on cadmium toxicity in plants: a review. Environ. Pollut. 1997, 98, 29.
Studies on cadmium toxicity in plants: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXht12isLo%3D&md5=a30f21dbe895814dc220b09891a1e37fCAS | 15093342PubMed |

[4]  A. J. Francis, C. J. Dodge, Anaerobic microbial remobilization of toxic metals coprecipitated with iron oxide. Environ. Sci. Technol. 1990, 24, 373.
Anaerobic microbial remobilization of toxic metals coprecipitated with iron oxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXotlCgsQ%3D%3D&md5=998be525b977692077b674fb9d317704CAS |

[5]  E. Bazilevskaya, D. D. Archibald, C. E. Martínez, Rate constants and mechanisms for the crystallization of Al nano-goethite under environmentally relevant conditions. Geochim. Cosmochim. Acta 2012, 88, 167.
Rate constants and mechanisms for the crystallization of Al nano-goethite under environmentally relevant conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvVOrtbY%3D&md5=4be4edd823095a42f5b11eb178967c1bCAS |

[6]  D. R. Roberts, A. C. Scheinost, D. L. Sparks, Zinc speciation in a smelter-contaminated soil profile using bulk and microspectroscopic techniques. Environ. Sci. Technol. 2002, 36, 1742.
Zinc speciation in a smelter-contaminated soil profile using bulk and microspectroscopic techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhs1yitbg%3D&md5=b416272e791cf370b25eaffb97909211CAS | 11993872PubMed |

[7]  A. C. Scheinost, R. Kretzschmar, S. Pfister, D. R. Roberts, Combining selective sequential extractions, X-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil. Environ. Sci. Technol. 2002, 36, 5021.
Combining selective sequential extractions, X-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotlCjs7g%3D&md5=bfb9bb9d1985a4bd19d4aac3c3bc90dfCAS | 12523415PubMed |

[8]  E. E. Sileo, P. S. Solis, C. O. Paiva-Santos, Structural study of a series of synthetic goethites obtained in aqueous solutions containing cadmium(II) ions. Powder Diffraction. 2003, 18, 50.
Structural study of a series of synthetic goethites obtained in aqueous solutions containing cadmium(II) ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsF2nu74%3D&md5=6603affc510990c86cfdb1b99fbd634eCAS |

[9]  D. L. Jones, Organic acids in the rhizosphere – a critical review. Plant Soil 1998, 205, 25.
Organic acids in the rhizosphere – a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlGjs78%3D&md5=e1cd35871039e2b13f08178c857261bcCAS |

[10]  J. F. Banfield, W. W. Barker, S. A. Welch, A. Taunton, Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proc. Natl. Acad. Sci. USA 1999, 96, 3404.
Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjslCisbc%3D&md5=f9a33338e70b8a4ceaba279fd7570d48CAS | 10097050PubMed |

[11]  D. L. Jones, P. R. Darrah, Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 1994, 166, 247.
Role of root derived organic acids in the mobilization of nutrients from the rhizosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsl2jur8%3D&md5=51492d930820b995c9418ab98923f902CAS |

[12]  G. Krishnamurti, G. Cieslinski, P. Huang, K. Van Rees, Kinetics of cadmium release from soils as influenced by organic acids: implication in cadmium availability. J. Environ. Qual. 1997, 26, 271.
Kinetics of cadmium release from soils as influenced by organic acids: implication in cadmium availability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXptFOrsA%3D%3D&md5=b748440dfa2e8312144eedb2b20640c6CAS |

[13]  W. Stumm, Reactivity at the mineral-water interface: dissolution and inhibition. Colloids Surf. A Physicochem. Eng. Asp. 1997, 120, 143.
Reactivity at the mineral-water interface: dissolution and inhibition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXht1Khu70%3D&md5=a9453cb5803efc2377c98ad229523079CAS |

[14]  S.-F. Cheah, S. M. Kraemer, J. Cervini-Silva, G. Sposito, Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of iron. Chem. Geol. 2003, 198, 63.
Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1elsLk%3D&md5=ebc08d6ac532161fbc16a37393e60f16CAS |

[15]  S. Kraemer, Iron oxide dissolution and solubility in the presence of siderophores. Aquat. Sci. 2004, 66, 3.
Iron oxide dissolution and solubility in the presence of siderophores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslGksLk%3D&md5=50982ef9ba1853a0908ce52d5b0d46abCAS |

[16]  M. A. Wells, R. J. Gilkes, R. W. Fitzpatrick, Properties and acid dissolution of metal-subsituted hematites. Clays Clay Miner. 2001, 49, 60.
Properties and acid dissolution of metal-subsituted hematites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs12rsbY%3D&md5=41a14d8e17fa7328b99ddcef68b0a325CAS |

[17]  N. Kaur, B. Singh, B. J. Kennedy, Dissolution of Cr, Zn, Cd, and Pb single- and multi-metal-substituted goethite: relationship to structural, morphological, and dehydroxylation properties. Clays Clay Miner. 2010, 58, 415.
Dissolution of Cr, Zn, Cd, and Pb single- and multi-metal-substituted goethite: relationship to structural, morphological, and dehydroxylation properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyhu77L&md5=f06d441be8b529c19ef934592d71415cCAS |

[18]  C. E. Martínez, A. R. Jacobson, M. B. McBride, Lead phosphate minerals: solubility and dissolution by model and natural ligands. Environ. Sci. Technol. 2004, 38, 5584.
Lead phosphate minerals: solubility and dissolution by model and natural ligands.Crossref | GoogleScholarGoogle Scholar | 15575275PubMed |

[19]  A. R. Jacobson, C. E. Martínez, M. Spagnuolo, M. B. McBride, P. Baveye, Reduction of silver solubility by humic acid and thiol ligands during acanthite (β-Ag2S) dissolution. Environ. Pollut. 2005, 135, 1.
Reduction of silver solubility by humic acid and thiol ligands during acanthite (β-Ag2S) dissolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2htb0%3D&md5=3f6cb308f083f70bbd190805e1cab4ddCAS | 15701387PubMed |

[20]  M. Ravichandran, G. R. Aiken, M. M. Reddy, J. N. Ryan, Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades. Environ. Sci. Technol. 1998, 32, 3305.
Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslaqs74%3D&md5=812f7fe771516a0bb96ac58b418b99b7CAS |

[21]  L. Hersman, T. Lloyd, G. Sposito, Siderophore-promoted dissolution of hematite. Geochim. Cosmochim. Acta 1995, 59, 3327.
Siderophore-promoted dissolution of hematite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnslOgurc%3D&md5=705aa9ac6b50318e334d6323e0b74075CAS |

[22]  L. J. Liermann, B. E. Kalinowski, S. L. Brantley, J. G. Ferry, Role of bacterial siderophores in dissolution of hornblende. Geochim. Cosmochim. Acta 2000, 64, 587.
Role of bacterial siderophores in dissolution of hornblende.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1ersbo%3D&md5=9d164bcfbe8406178246dba762236507CAS |

[23]  U. Schwertmann, Solubility and dissolution of iron oxides. Plant Soil 1991, 130, 1.
Solubility and dissolution of iron oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhsVajtbo%3D&md5=bbdb438cc8e578f7aa21fd9e606c557eCAS |

[24]  M. Alvarez, E. E. Sileo, E. H. Rueda, Effect of Mn(II) incorporation on the transformation of ferrihydrite to goethite. Chem. Geol. 2005, 216, 89.
Effect of Mn(II) incorporation on the transformation of ferrihydrite to goethite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1GntLY%3D&md5=98925942813d4612401637cdc67872b6CAS |

[25]  K. A. Barrett, M. B. McBride, Dissolution of zinc–cadmium sulfide solid solutions in aerated aqueous suspension. Soil Sci. Soc. Am. J. 2007, 71, 322.
Dissolution of zinc–cadmium sulfide solid solutions in aerated aqueous suspension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVSrtbc%3D&md5=123116fd7c6459a4fe7fa3e3c1fb9df4CAS |

[26]  A. E. Martell, R. M. Smith, Critical Stability Constants 1974 (Plenum Press: New York).

[27]  W. L. Lindsay, Chemical Equilibria in Soils 1979 (Wiley: Chichester, UK).

[28]  U. Schwertmann, R. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization 1991 (Wiley: Weinheim, Germany).

[29]  S. Komarneni, E. Fregeau, E. Breval, R. Roy, Hydrothermal preparation of ultrafine ferrites and their sintering. J. Am. Ceram. Soc. 1988, 71, C-26.
Hydrothermal preparation of ultrafine ferrites and their sintering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsVWrt7s%3D&md5=63aa71b7c527d4eb2c14a3a097d25a5dCAS |

[30]  W. Stiers, U. Schwertmann, Evidence for manganese substitution in synthetic goethite. Geochim. Cosmochim. Acta 1985, 49, 1909.
Evidence for manganese substitution in synthetic goethite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlvVygsbo%3D&md5=114975e2589f9da108c428252db48f82CAS |

[31]  A. Pavese, D. Levy, A. Hoser, Cation distribution in synthetic zinc ferrite (Zn0.97Fe2.02O4) from in situ high-temperature neutron powder diffraction. Am. Mineral. 2000, 85, 1497.
| 1:CAS:528:DC%2BD3cXnsVSmu7c%3D&md5=68b853f8c7a5db55191ec2fd3f4bafbcCAS |

[32]  C. E. Martínez, M. B. McBride, Aging of coprecipitated Cu in alumina: changes in structural location, chemical form, and solubility. Geochim. Cosmochim. Acta 2000, 64, 1729.
Aging of coprecipitated Cu in alumina: changes in structural location, chemical form, and solubility.Crossref | GoogleScholarGoogle Scholar |

[33]  S. W. Poulton, D. E. Canfield, Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 2005, 214, 209.
Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVCjsg%3D%3D&md5=43655d5f0d0e7ef4b47099ebc7bf2e83CAS |

[34]  J. Gerth, Unit-cell dimensions of pure and trace metal-associated goethites. Geochim. Cosmochim. Acta 1990, 54, 363.
Unit-cell dimensions of pure and trace metal-associated goethites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXht1GqsLs%3D&md5=16e1334e4d98a479247633ecb48ea321CAS |

[35]  T. Sun, C. R. Paige, W. J. Snodgrass, The effect of cadmium on the transformation of ferrihydrite into crystalline products at pH 8. Water Air Soil Pollut. 1996, 91, 307.
The effect of cadmium on the transformation of ferrihydrite into crystalline products at pH 8.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls1ahtb0%3D&md5=500ab5a1e02c9b80e2e11100900576fcCAS |

[36]  W. Wolski, E. Wolska, J. Kaczmarek, U. Politańska, Nonstoichiometric solid solutions during formation of Cd/Ni ferrites. Solid State Ion. 1993, 63–65, 628.
Nonstoichiometric solid solutions during formation of Cd/Ni ferrites.Crossref | GoogleScholarGoogle Scholar |

[37]  C. Venkataraju, G. Sathishkumar, K. Sivakumar, Effect of Cd on the structural, magnetic and electrical properties of nanostructured Mn–Zn ferrite. J. Magn. Magn. Mater. 2011, 323, 1817.
Effect of Cd on the structural, magnetic and electrical properties of nanostructured Mn–Zn ferrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVGqtLo%3D&md5=a4039823c0146a60edcd5e34d835b5aeCAS |

[38]  M. Yokoyama, T. Sato, E. Ohta, Magnetization of cadmium ferrite prepared by coprecipitation. J. Appl. Phys. 1996, 80, 1015.
Magnetization of cadmium ferrite prepared by coprecipitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktlKhsr4%3D&md5=fcb7291d4841490969bda6af9cf8a446CAS |

[39]  K. N. Harish, H. S. Bhojya Naik, P. N. Prashanth Kumar, R. Viswanath, Synthesis, enhanced optical and photocatalytic study of Cd–Zn ferrites under sunlight. Catal. Sci. Technol. 2012, 2, 1033.
Synthesis, enhanced optical and photocatalytic study of Cd–Zn ferrites under sunlight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1SnsLw%3D&md5=ec86e6d9d7709316248a4c9f5c7a18a9CAS |

[40]  R. Iyer, R. Desai, R. Upadhyay, Low temperature synthesis of nanosized Mn1-xCdxFe2O4 ferrites. Indian J. Pure Appl. Phys. 2009, 47, 180.
| 1:CAS:528:DC%2BD1MXlt1ygtrg%3D&md5=6946dff2a9c342560106d3d5d6475cceCAS |

[41]  E. Wolska, W. Wolski, J. Kaczmarek, E. Riedel, D. Prick, Defect structures in cadmium-nickel ferrites. Solid State Ion. 1992, 51, 231.
Defect structures in cadmium-nickel ferrites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltVWgtLc%3D&md5=d3fddf566ba3c635e816a7836ce9eb61CAS |

[42]  Y. Zhang, N. Kallay, E. Matijevic, Interaction of metal hydrous oxides with chelating agents. 7. Hematite-oxalic acid and -citric acid systems. Langmuir 1985, 1, 201.
Interaction of metal hydrous oxides with chelating agents. 7. Hematite-oxalic acid and -citric acid systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht1Sgsrk%3D&md5=2b9adfab5ce4b3e254e6974a59a95211CAS |

[43]  A. M. Scheidegger, D. G. Strawn, G. M. Lamble, D. L. Sparks, The kinetics of mixed Ni–Al hydroxide formation on clay and aluminum oxide minerals: a time-resolved XAFS study. Geochim. Cosmochim. Acta 1998, 62, 2233.
The kinetics of mixed Ni–Al hydroxide formation on clay and aluminum oxide minerals: a time-resolved XAFS study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvFWrsr4%3D&md5=6f69cc941de440984cf1c321f91e52f9CAS |

[44]  J.-B. d'Espinose de la Caillerie, M. Kermarec, O. Clause, Impregnation of γ-alumina with Ni(II) or Co(II) ions at neutral pH: hydrotalcite-type coprecipitate formation and characterization. J. Am. Chem. Soc. 1995, 117, 11471.
Impregnation of γ-alumina with Ni(II) or Co(II) ions at neutral pH: hydrotalcite-type coprecipitate formation and characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovF2hur8%3D&md5=016d8ec6d0eb341ecb085f58a455d811CAS |

[45]  C. E. Martínez, M. B. McBride, Coprecipitates of Cd, Cu, Pb and Zn in iron oxides: solid phase transformation and metal solubility after aging and thermal treatment. Clays Clay Miner. 1998, 46, 537.
Coprecipitates of Cd, Cu, Pb and Zn in iron oxides: solid phase transformation and metal solubility after aging and thermal treatment.Crossref | GoogleScholarGoogle Scholar |

[46]  M. Guelke, F. von Blanckenburg, Fractionation of stable iron isotopes in higher plants. Environ. Sci. Technol. 2007, 41, 1896.
Fractionation of stable iron isotopes in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFGisr8%3D&md5=e5a527c340a35a5fc76a10effde0f1c4CAS | 17410781PubMed |

[47]  J. W. Morse, M. L. Bender, Partition coefficients in calcite: examination of factors influencing the validity of experimental results and their application to natural systems. Chem. Geol. 1990, 82, 265.
Partition coefficients in calcite: examination of factors influencing the validity of experimental results and their application to natural systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtFGns7g%3D&md5=031966a107be8fa95fc47b41237627ddCAS |

[48]  M. B. McBride, Environmental Chemistry of Soils 1994 (Oxford University Press: New York).

[49]  F. Trolard, Y. Tardy, The stabilities of gibbsite, boehmite, aluminous goethites and aluminous hematites in bauxites, ferricretes and laterites as a function of water activity, temperature and particle size. Geochim. Cosmochim. Acta 1987, 51, 945.
The stabilities of gibbsite, boehmite, aluminous goethites and aluminous hematites in bauxites, ferricretes and laterites as a function of water activity, temperature and particle size.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitFOju70%3D&md5=d423e90b0a490c80e5495e4a28988857CAS |