Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Physical long-term regeneration dynamics of soil organic matter as followed by 1H solid-state NMR methods

Alexander Jäger A , Jette Schwarz B , Yamuna Kunhi Mouvenchery B , Gabriele E. Schaumann B and Marko Bertmer A C
+ Author Affiliations
- Author Affiliations

A Leipzig University, Institute for Experimental Physics II, Faculty for Physics and Earth Sciences, Linnéstraße 5, D-04109 Leipzig, Germany.

B University of Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstraße 7, D-76829 Landau, Germany.

C Corresponding author. Email: bertmer@physik.uni-leipzig.de

Environmental Chemistry 13(1) 50-57 https://doi.org/10.1071/EN14216
Submitted: 8 October 2014  Accepted: 21 March 2015   Published: 18 August 2015

Environmental context. The mobility of soil organic matter and water molecules has a strong influence on the availability of fertilisers as well as on the fate of pollutants in soil. Magnetic resonance techniques identified two regimes of mobility change on the molecular level occurring on a timescale of 1 year after initially heating the sample. The results can help to understand the effect of soil type and water content for agricultural use and soil protection.

Abstract. 1H wide-line solid-state NMR methods have been applied to monitor long-term mobility changes in the supramolecular network of soil organic matter and water induced by short thermal treatment. NMR line widths are a direct measure of the mobility of water molecules and organic matter components. For the first time, we obtained an insight into the long-term physical mechanisms in terms of molecular mobility governing soil organic matter–water interactions. All time series reveal a systematic, attenuated proton demobilisation on time scales with a maximum of 1 year that depends on water content and type of soil. Results are discussed in the context of water molecule bridges and are compared with the results of structural transition temperatures obtained from differential scanning calorimetry measurements. The analysis is based on a porous system with random field characteristics. Two major features, a logarithmic time dependence in the first hours and a linear time dependence at longer times after the heating event, are observed in all investigated samples. In peat samples, a temporary increase of mobility was observed, the point in time depending on water content. The soil organic matter physicochemical matrix aging mechanism could also be relevant for the aging of organic chemicals in soil samples, suggesting a long-term reduction in molecular mobility.


References

[1]  M. W. I. Schmidt, M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, D. A. Manning, P. Nannipieri, D. P. Rasse, S. Weiner, S. E. Trumbore, Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49.
Persistence of soil organic matter as an ecosystem property.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yltrnF&md5=4a7c3e9d1a2690e5f4764c9546c48499CAS |

[2]  J. J. Pignatello, B. Xing, Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 1996, 30, 1.
Mechanisms of slow sorption of organic chemicals to natural particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsFyrsr0%3D&md5=18f0c4463eb1efef408fbc486f3367e9CAS |

[3]  I. Kögel-Knabner, G. Guggenberger, M. Kleber, E. Kandeler, K. Kalbitz, S. Scheu, K. Eusterhues, P. Leinweber, Organomineral associations in temperate soils: integrating biology, mineralogy and organic matter chemistry. J. Plant Nutr. Soil Sci. 2008, 171, 61.
Organomineral associations in temperate soils: integrating biology, mineralogy and organic matter chemistry.Crossref | GoogleScholarGoogle Scholar |

[4]  G. E. Schaumann, Matrix relaxation and change of water state during hydration of peat. Colloids Surf. A Physicochem. Eng. Asp. 2005, 265, 163.
Matrix relaxation and change of water state during hydration of peat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1yntrk%3D&md5=015209db6c12f3b89517d235c9fb55feCAS |

[5]  Y. Kunhi Mouvenchery, J. Kučerík, D. Diehl, G. E. Schaumann, Cation-mediated cross-linking in natural organic matter: a review. Rev. Environ. Sci. Biotechnol. 2012, 11, 41.
Cation-mediated cross-linking in natural organic matter: a review.Crossref | GoogleScholarGoogle Scholar |

[6]  G. E. Schaumann, E. J. LeBoeuf, Glass transitions in peat – their relevance and the impact of water. Environ. Sci. Technol. 2005, 39, 800.
Glass transitions in peat – their relevance and the impact of water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSltbnE&md5=efc4e905b515d19817a2b3ef244a465fCAS | 15757342PubMed |

[7]  G. E. Schaumann, M. Bertmer, Do water molecules bridge soil organic matter molecule segments? Eur. J. Soil Sci. 2008, 59, 423.
Do water molecules bridge soil organic matter molecule segments?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVOju70%3D&md5=8dccb83092468734977073cb7f2b0e71CAS |

[8]  G. E. Schaumann, S. Thiele-Bruhn, Molecular modelling of soil organic matter: squaring the circle? Geoderma 2011, 169, 55.
Molecular modelling of soil organic matter: squaring the circle?Crossref | GoogleScholarGoogle Scholar |

[9]  Y. Kunhi Mouvenchery, A. Jaeger, A. J. A. Aquino, D. Tunega, D. Diehl, M. Bertmer, G. E. Schaumann, Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time. PLoS One 2013, 8, e65359.
Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time.Crossref | GoogleScholarGoogle Scholar | 23750256PubMed |

[10]  G. E. Schaumann, D. Diehl, M. Bertmer, A. Jaeger, P. Conte, G. Alonzo, J. Bachmann, Combined proton NMR wideline and NMR relaxometry to study SOM–water interactions of cation-treated soils. J. Hydrol. Hydromech. 2013, 61, 50.
Combined proton NMR wideline and NMR relaxometry to study SOM–water interactions of cation-treated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmslWntrs%3D&md5=16608991704a4bffb31603d4d0eb9ffeCAS |

[11]  G. E. Schaumann, D. Gildemeister, D. Diehl, Y. Kunhi Mouvenchery, S. Spielvogel, Interactions between cations and water molecule bridges in soil organic matter. J. Soils Sediments 2013, 13, 1579.
Interactions between cations and water molecule bridges in soil organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCqurnL&md5=fcc3ec74de955faacf4d07369bf01378CAS |

[12]  A. J. A. Aquino, D. Tunega, G. E. Schaumann, G. Haberhauer, M. H. Gerzabek, H. Lischka, Stabilizing capacity of water bridges in nanopore segments of humic substances: a theoretical investigation. J. Phys. Chem. C 2009, 113, 16 468.
Stabilizing capacity of water bridges in nanopore segments of humic substances: a theoretical investigation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWkurzJ&md5=93403a4b7444276deb5fe864a31f02dfCAS |

[13]  G. E. Schaumann, E. J. LeBoeuf, R. C. DeLapp, J. Hurraß, Thermomechanical analysis of air-dried whole soil samples. Thermochim. Acta 2005, 436, 83.
Thermomechanical analysis of air-dried whole soil samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvVSmurY%3D&md5=4d8f5b23e2792a55fbee541d6abfc438CAS |

[14]  J. Hurrass, G. E. Schaumann, Is glassiness a common characteristic of soil organic matter? Environ. Sci. Technol. 2005, 39, 9534.
Is glassiness a common characteristic of soil organic matter?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2ku73N&md5=e5598a558ba711b11c0d405cb3c1e33dCAS | 16475333PubMed |

[15]  T. Schneckenburger, G. E. Schaumann, S. K. Woche, S. Thiele-Bruhn, Short-term evolution of hydration effects on soil organic matter properties and resulting implications for sorption of naphthalene-2-ol. J. Soils Sediments 2012, 12, 1269.
Short-term evolution of hydration effects on soil organic matter properties and resulting implications for sorption of naphthalene-2-ol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOrsLnK&md5=ed3b80a16665b02c4e58d1bf7fba0c43CAS |

[16]  A. Jäger, G. E. Schaumann, M. Bertmer, Optimized NMR spectroscopic strategy to characterize water dynamics in soil samples. Org. Geochem. 2011, 42, 917.
Optimized NMR spectroscopic strategy to characterize water dynamics in soil samples.Crossref | GoogleScholarGoogle Scholar |

[17]  E. Vittadini, L. C. Dickinson, P. Chinachoti, 1H and 2H NMR mobility in cellulose. Carbohydr. Polym. 2001, 46, 49.
1H and 2H NMR mobility in cellulose.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWktr4%3D&md5=a0c85375a9d86923fd8d41c7c230b2c1CAS |

[18]  W. Derbyshire, M. van den Bosch, D. van Dusschoten, W. MacNaughtan, I. A. Farhat, M. A. Hemminga, J. R. Mitchell, Fitting of the beat pattern observed in NMR free-induction decay signals of concentrated carbohydrate–water solutions. J. Magn. Reson. 2004, 168, 278.
Fitting of the beat pattern observed in NMR free-induction decay signals of concentrated carbohydrate–water solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVOjurY%3D&md5=524f458b6c08eb6f7666666e4931357cCAS | 15140438PubMed |

[19]  D. S. Fisher, D. A. Huse, Ordered phase of short-range Ising spin-glasses. Phys. Rev. Lett. 1986, 56, 1601.
Ordered phase of short-range Ising spin-glasses.Crossref | GoogleScholarGoogle Scholar | 10032719PubMed |

[20]  D. A. Huse, Critical dynamics of random-field Ising systems with conserved order parameter. Phys. Rev. Lett. 1987, 36, 5383.

[21]  R. Valiullin, S. Naumov, P. Galvosas, J. Kärger, H.-J. Woo, F. Porcheron, P. A. Monson, Exploration of molecular dynamics during transient sorption of fluids in mesoporous materials. Nature 2006, 443, 965.
Exploration of molecular dynamics during transient sorption of fluids in mesoporous materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFaksrvM&md5=6d50b9696bc5cb776025723d2f903775CAS | 17066029PubMed |

[22]  K. Schwärzel, M. Renger, R. Sauerbrey, G. Wessolek, Soil physical characteristics of peat soils. J. Plant Nutr. Soil Sci. 2002, 165, 479.
Soil physical characteristics of peat soils.Crossref | GoogleScholarGoogle Scholar |

[23]  A. Shchegolikhina, Y. Kunhi Mouvenchery, S. K. Woche, J. Bachmann, G. E. Schaumann, B. Marschner, Cation treatment and drying-temperature effects on nonylphenol and phenanthrene sorption to a sandy soil. J. Plant Nutr. Soil Sci. 2014, 177, 141.
Cation treatment and drying-temperature effects on nonylphenol and phenanthrene sorption to a sandy soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXos12lsL0%3D&md5=875061a11ef278914f858356142b2027CAS |

[24]  L. Greenspan, Humidity fixed points of binary saturated aqueous solutions. J. Res. Nat. Bur. Stand. 1977, 81A, 89.
Humidity fixed points of binary saturated aqueous solutions.Crossref | GoogleScholarGoogle Scholar |

[25]  M. R. Bendall, R. E. Gordon, Depth and refocusing pulses designed for multipulse NMR with surface coils. J. Magn. Reson. 1983, 53, 365.
| 1:CAS:528:DyaL3sXks1eju70%3D&md5=713c41ba35f2f00bd4f77cfdcda7bf1cCAS |

[26]  D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 2002, 40, 70.
Modelling one- and two-dimensional solid-state NMR spectra.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1ajuw%3D%3D&md5=6c92a3aad1fd8914c183c8eb01eb9751CAS |

[27]  J. M. Hutchinson, Physical aging of polymers. Prog. Polym. Sci. 1995, 20, 703.
Physical aging of polymers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsF2jsrc%3D&md5=18b8107bf1af061faed72541ad3d53aeCAS |

[28]  P. G. de Gennes, Glass transitions in thin polymer films. Eur. Phys. J. E 2000, 2, 201.
Glass transitions in thin polymer films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms12ktb4%3D&md5=312f06397eee8053001de2d6154718a4CAS |

[29]  J. Kučerík, J. Schwarz, A. Jäger, M. Bertmer, G. E. Schaumann, Character of transitions causing the physicochemical aging of a sapric histosol. J. Therm. Anal. Calorim. 2014, 118, 1169.
Character of transitions causing the physicochemical aging of a sapric histosol.Crossref | GoogleScholarGoogle Scholar |

[30]  A. Miltner, R. Kindler, H. Knicker, H.-H. Richnow, M. Kästner, Fate of microbial biomass-derived amino acids in soil and their contribution to soil organic matter. Org. Geochem. 2009, 40, 978.
Fate of microbial biomass-derived amino acids in soil and their contribution to soil organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVaqsrbO&md5=9cc031d5b56fd7bb2ed8b9af3ec845b8CAS |