Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Formation of polyaromatic hydrocarbon (PAH)-quinones during the gas phase reactions of PAHs with the OH radical in the atmosphere

Ji Yi Lee A D , Douglas A. Lane B and Yong Pyo Kim C
+ Author Affiliations
- Author Affiliations

A Department of Environmental Engineering, Chosun University, 375 Seosuk-dong, Dong-gu, Gwhangju 501-759, South Korea.

B Air Quality Research Division, Science and Technology Branch, Environment Canada, 4905 Dufferin Street, Toronto, Ontario, M3H 5T4, Canada. [Retired.]

C Department of Environmental Science and Engineering, Ewha Womans University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul 120-750, South Korea.

D Corresponding author. Email: yijiyi@chosun.ac.kr

Environmental Chemistry 12(3) 307-315 https://doi.org/10.1071/EN14150
Submitted: 12 August 2014  Accepted: 31 January 2015   Published: 22 April 2015

Environmental context. Atmospheric quinones present a potential toxic risk to human health because of their involvement in the generation of reactive oxygen species. Gas phase reactions of naphthalene and phenanthrene with the OH radical are investigated in a laboratory reaction chamber to provide a preliminary assessment of the importance of the atmospheric formation of quinones.

Abstract. In light of the potential toxicity of quinones (QNs) to human health, previous studies carried out measurement of QNs in ambient air samples and from motor vehicle emissions to understand the characteristics and the sources of QNs in the atmosphere. The major compounds observed in the ambient air samples comprised two and three benzene rings and included polyaromatic hydrocarbon (PAH)-quinones (PAH-QNs) such as 1,2-naphthoquinone (1,2-NQ), 1,4-naphthoquinone (1,4-NQ), 9,10-phenanthrenequinone (9,10-PQ) and 9,10-anthraquinone (9,10-AQ). Although these PAH-QNs are found in vehicular emissions, they may also be formed by the photochemical reactions of gas phase PAHs with atmospheric oxidants. In this study, to allow an assessment of the importance of the atmospheric formation of PAH-QNs and to understand more clearly the sources of PAH-QNs in the atmosphere, the formation yields of PAH-QNs from the gas phase reactions of naphthalene and phenanthrene with the OH radical were observed in a laboratory reaction chamber. In addition, the phase distribution of the PAH-QNs was determined. For naphthoquinones (NQs), the formation yields of 1,4-NQ and 1,2-NQ were 1.5 ± 0.4 and 5.1 ± 2.7 % respectively. The measured yields of PQs were 3.6 ± 0.8 % for 9,10-PQ and 2.7 ± 1.1 % for 1,4-PQ. From the measured yield data, the atmospheric formation of PAH-QNs was estimated and the importance of the atmospheric formation of PAH-QNs from the gas phase reaction of PAHs with the OH radical is discussed.

Additional keywords: atmospheric formation, formation yeild, naphthalene, phenanthrene.


References

[1]  J. L. Bolton, M. A. Trush, T. M. Penning, G. Dryhurst, T. J. Monks, Role of quinones in toxicology. Chem. Res. Toxicol. 2000, 13, 135.
Role of quinones in toxicology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1aitr4%3D&md5=958df472c19d26f79cfb3e44b34c2315CAS | 10725110PubMed |

[2]  N. Iwamoto, D. Sumi, T. Ishii, K. Uchida, A. K. Cho, J. R. Froines, Y. Kumagai, Chemical knockdown of protein-tyrosine phosphatase 1B by 1,2-naphthoquinone through covalent modification causes persistent transactivation of epidermal growth factor receptor. J. Biol. Chem. 2007, 282, 33396.
Chemical knockdown of protein-tyrosine phosphatase 1B by 1,2-naphthoquinone through covalent modification causes persistent transactivation of epidermal growth factor receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Oru7fK&md5=837db2470a66bca8159e7c7d1022230bCAS | 17878162PubMed |

[3]  A. K. Cho, E. Di Stefano, Y. You, C. E. Rodriguez, D. A. Schmitz, Y. Kumagai, A. H. Miguel, A. Eiguren-Fernandez, T. Kobayashi, E. Avol, J. R. Froines, Determination of four quinones in diesel exhaust particles, SRM 1649a, and atmospheric PM2.5. Aerosol Sci. Technol. 2004, 38, 68.
Determination of four quinones in diesel exhaust particles, SRM 1649a, and atmospheric PM2.5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtlChsL4%3D&md5=9607092ecadf9ebb1a0878a521485333CAS |

[4]  N. Kishikawa, M. Wada, Y. Ohba, K. Nakashima, N. Kuroda, Highly sensitive and selective determination of 9,10-phenanthrenequinone in airborne particulates using high-performance liquid chromatography with pre-column derivatization and fluorescence detection. J. Chromatogr. A 2004, 1057, 83.
Highly sensitive and selective determination of 9,10-phenanthrenequinone in airborne particulates using high-performance liquid chromatography with pre-column derivatization and fluorescence detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsFelu7Y%3D&md5=dc1249ce95d77d62db70d90faf45b70fCAS | 15584225PubMed |

[5]  A. Eiguren-Fernandez, A. H. Miguel, E. Di Stefano, D. A. Schmitz, A. K. Cho, S. Thurairatnam, E. L. Avol, J. R. Froines, Atmospheric distribution of gas- and particle-phase Quinones in Southern California. Aerosol Sci. Technol. 2008, 42, 854.
Atmospheric distribution of gas- and particle-phase Quinones in Southern California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWltb3J&md5=bf122795717b48f9aae8d55fbbcd49a3CAS |

[6]  A. Eiguren-Fernandez, A. H. Miguel, R. Lu, K. Purvis, B. Grant, P. Mayo, E. Di Stefano, A. K. Cho, J. Froines, Atmospheric formation of 9,10-phenanthraquinone in the Los Angeles air basin. Atmos. Environ. 2008, 42, 2312.
Atmospheric formation of 9,10-phenanthraquinone in the Los Angeles air basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFOhs7g%3D&md5=8b88de3bc30ff300ff113d8d5407daf2CAS |

[7]  C. Walgraeve, K. Demeestere, J. Dewulf, R. Zimmermann, H. Van Langenhove, Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: Molecular characterization and occurrence. Atmos. Environ. 2010, 44, 1831.
Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: Molecular characterization and occurrence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFSis74%3D&md5=59abde53e7d189a4793fadbcc3fc3a37CAS |

[8]  C. A. Jakober, S. G. Riddle, M. A. Robert, H. Destaillats, M. J. Charles, P. G. GreenM. J. Kleeman, Quinone Emissions from Gasoline and Diesel Motor Vehicles. Environ. Sci. Technol. 2007, 41, 4548.
P. G. GreenM. J. Kleeman, Quinone Emissions from Gasoline and Diesel Motor Vehicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVyhtr8%3D&md5=205fbfa1ab2ed57cdeb9c65747b8edc0CAS | 17695895PubMed |

[9]  P. M. Fine, G. R. Cass, B. R. T. Simoneit, Chemical characterization of fine particle emissions from the fireplace combustion of woods grown in the Southern United States. Environ. Sci. Technol. 2002, 36, 1442.
Chemical characterization of fine particle emissions from the fireplace combustion of woods grown in the Southern United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFKjsbo%3D&md5=cc85ffdaa99a3e143d50fe7a1661b44dCAS | 11999049PubMed |

[10]  D. Helmig, W. P. Harger, OH radical-initiated gas-phase reaction products of phenanthrene. Sci. Total Environ. 1994, 148, 11.
OH radical-initiated gas-phase reaction products of phenanthrene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktFKktro%3D&md5=bf425b0b4927d1883abc3b8481e4f0eeCAS |

[11]  J. Sasaki, S. M. Aschmann, E. S. C. Kwok, R. Atkinson, J. Arey, Products of the gas-phase OH and NO3 radical-initiated reactions of naphthalene. Environ. Sci. Technol. 1997, 31, 3173.
Products of the gas-phase OH and NO3 radical-initiated reactions of naphthalene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1emt7o%3D&md5=4a57cdd98a023e7071bec20676cff1deCAS |

[12]  L. Wang, R. Atkinson, J. Arey, Formation of 9,10-phenanthrenequinone by atmospheric gas-phase reactions of phenanthrene. Atmos. Environ. 2007, 41, 2025.
Formation of 9,10-phenanthrenequinone by atmospheric gas-phase reactions of phenanthrene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVSqsL4%3D&md5=54e7b5db863efdb1009b2bdc76b30569CAS |

[13]  J. Y. Lee, D. A. Lane, Unique products from the reaction of naphthalene with the hydroxyl radical. Atmos. Environ. 2009, 43, 4886.
Unique products from the reaction of naphthalene with the hydroxyl radical.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWlu73L&md5=e3a6ccea7683dfdd1e50670fc6c0a3ddCAS |

[14]  J. Y. Lee, D. A. Lane, Formation of oxidized products from the reaction of gaseous phenanthrene with the OH radical in a reaction chamber. Atmos. Environ. 2010, 44, 2469.
Formation of oxidized products from the reaction of gaseous phenanthrene with the OH radical in a reaction chamber.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFyktLg%3D&md5=8fde61bd2ee4c9b7d499636f3f42a9e9CAS |

[15]  R. Lu, J. Wu, R. P. Turco, A. M. Winer, R. Atkinson, J. Arey, S. E. Paulson, F. W. Lurmann, A. H. Miguel, A. Eiguren-Fernandez, Naphthalene distributions and human exposure in Southern California. Atmos. Environ. 2005, 39, 489.
Naphthalene distributions and human exposure in Southern California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFaqu7bO&md5=0b882a5b8c42e9aed44cbf67eb5d6edfCAS |

[16]  C. M. Mihele, H. A. Wiebe, D. A. Lane, Particle formation and gas/particle partition measurements of the products of the naphthalene-OH radical reaction in a smog chamber. Polycycl. Aromat. Comp. 2002, 22, 729.
Particle formation and gas/particle partition measurements of the products of the naphthalene-OH radical reaction in a smog chamber.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFams7o%3D&md5=8b8bb8ee91c7b49cbf812fcab63dc613CAS |

[17]  N. J. Bunce, L. Liu, J. Zhu, D. A. Lane, Reaction of naphthalene and its derivatives with hydroxyl radicals in the gas phase. Environ. Sci. Technol. 1997, 31, 2252.
Reaction of naphthalene and its derivatives with hydroxyl radicals in the gas phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvFCgsbc%3D&md5=ddb6b3b089adb6ddee5aec6f67dcb3b1CAS |

[18]  P. H. Howard, Handbook of Physical Properties of Organic Chemicals 1996 (CRC Press: London).

[19]  N. Nishino, J. Arey, R. Atkinson, Formation and reactions of 2-formylcinnamaldehyde in the OH radical-initiated reaction of naphthalene. Environ. Sci. Technol. 2009, 43, 1349.
Formation and reactions of 2-formylcinnamaldehyde in the OH radical-initiated reaction of naphthalene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlent7k%3D&md5=da70ba89e4a3a7cbc968daa257d167b3CAS | 19350902PubMed |

[20]  A. W. H. Chan, K. E. Kautzman, P. S. Chhabra, J. D. Surratt, M. N. Chan, J. D. Crounse, A. K¨urten, P. O. Wennberg, R. C. Flagan, J. H. Seinfeld, Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs). Atmos. Chem. Phys. 2009, 9, 3049.
Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFKrsr8%3D&md5=168d5051b2a718d9fa0c6e455c2f4483CAS |

[21]  W. Lee, P. S. Stevens, R. A. Hites, Rate constants for the gas-phase reactions of methylphenanthrenes with OH as a function of temperature. J. Phys. Chem. A 2003, 107, 6603.
Rate constants for the gas-phase reactions of methylphenanthrenes with OH as a function of temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVSmtL8%3D&md5=32be9b78a8730e83cc87cdba31ed01f9CAS |

[22]  F. Reisen, J. Arey, Atmospheric reactions influence seasonal PAH and nitro-PAH concentrations in the Los Angeles basin. Environ. Sci. Technol. 2005, 39, 64.
Atmospheric reactions influence seasonal PAH and nitro-PAH concentrations in the Los Angeles basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCmsLvM&md5=687d5622baafa0a55154f63ab23e65e4CAS | 15667076PubMed |

[23]  J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: from Air Pollution to Climate Change 1998, p. 208 (Wiley: Hoboken, NJ, USA).