Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Improved groundwater geogenic arsenic hazard map for Cambodia

C. Sovann A B and D. A. Polya A C
+ Author Affiliations
- Author Affiliations

A School of Earth, Atmospheric and Environmental Sciences & Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Manchester, M13 9PL, UK.

B Now at Department of Environmental Science, Royal University of Phnom Penh, Phnom Penh, Cambodia.

C Corresponding author. Email: david.polya@manchester.ac.uk

Environmental Chemistry 11(5) 595-607 https://doi.org/10.1071/EN14006
Submitted: 9 January 2014  Accepted: 25 May 2014   Published: 15 September 2014

Environmental context. Groundwater arsenic is a major environmental risk to human health in many regions of the world, including Cambodia where groundwater is often used for drinking water. We present data for hitherto poorly sampled regions in Cambodia, notably around Tonle Sap and in the coastal provinces, and provide a geo-statistical model of arsenic in shallow groundwater for the whole country.

Abstract. Arsenic is a known environmental chemical hazard in shallow groundwaters of Cambodia and is increasingly recognised as a major problem for public health. Notwithstanding this, accurate arsenic data are not available for many wells in potentially arsenic-prone areas, particularly around the Tonle Sap Great Lake (TSL) and in the coastal provinces (CP). We present here new data for shallow groundwater (16–120-m depth) arsenic in the TSL and CP regions as well as an improved regression-kriging (RK) based groundwater arsenic hazard map for the whole country. High arsenic levels (up to 100 μg L–1) were found in shallow groundwaters from the TSL and CP regions of Cambodia, but despite strong compositional similarities (near neutral, reducing, Na-Mg-Ca-HCO3 dominated) with high arsenic level groundwaters near the Mekong and Bassac rivers, groundwater arsenic levels in both the TSL and CP regions were most commonly low (interquartile range 0.09–1.2 μg L–1). The RK geostatistical model was highly successful, accounting for over 50 % of the observed variation in arsenic concentrations countrywide and represents a potentially useful tool for policymakers and those responsible and with the interest and authority to prepare arsenic mitigation and safe water supply plans.

Additional keywords: geostatistics, regression kriging.


References

[1]  A. H. Smith, E. O. Lingas, M. Rahman, Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull. World Health Organ. 2000, 78, 1093.
| 1:STN:280:DC%2BD3cvmsFSqtA%3D%3D&md5=ceb53fb427645e3595643e4f259bbf06CAS | 11019458PubMed |

[2]  P. L. Smedley, D. G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517.
A review of the source, behaviour and distribution of arsenic in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVSmur0%3D&md5=e91f95bcfc6b5336d0e64af1fca2a6c1CAS |

[3]  L. Charlet, D. A. Polya, Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster. Elements 2006, 2, 91.
Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster.Crossref | GoogleScholarGoogle Scholar |

[4]  M. Amini, K. C. Abbaspour, M. Berg, L. Winkel, S. J. Hug, E. Hoehn, H. Yang, C. A. Johnson, Statistical modeling of global geogenic arsenic contamination in groundwater. Environ. Sci. Technol. 2008, 42, 3669.
Statistical modeling of global geogenic arsenic contamination in groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks1OnsLs%3D&md5=15845cac8000e11926db0f715e6d85c1CAS | 18546706PubMed |

[5]  A. Mukherjee, P. Bhattacharya, K. Savage, A. Foster, J. Bundschuh, Distribution of geogenic arsenic in hydrologic systems: controls and challenges. J. Contam. Hydrol. 2008, 99, 1.
Distribution of geogenic arsenic in hydrologic systems: controls and challenges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Smu7Y%3D&md5=4f5e50e512292b19c5904cb6aa8d91c1CAS | 18514970PubMed |

[6]  P. Ravenscroft, H. Brammer, K. Richards, Arsenic Pollution: A Global Synthesis 2009 (Wiley-Blackwell: Chichester, UK).

[7]  D. A. Polya, D. Mondal, A. K. Giri, Quantification of deaths and DALYs arising from chronic exposure to arsenic in groundwaters utilized for drinking, cooking and irrigation of food crops, in Handbook of Disease Burdens and Quality of Life Measures (Eds. V. R. Preedy, R. R. Watson) 2010, pp. 702–728 (Springer: New York).

[8]  R. P. Schwarzenbach, T. Egli, T. B. Hofstetter, U. von Gunten, B. Wehrli, Global water pollution and human health. Annu. Rev. Environ. Resour. 2010, 35, 109.
Global water pollution and human health.Crossref | GoogleScholarGoogle Scholar |

[9]  D. J. Vaughan, D. A. Polya, Mineralogy matters: arsenic – the great poisoner revisited. Elements 2013, 9, 315.

[10]  R. Nickson, J. McArthur, W. Burgess, K. M. Ahmed, P. Ravenscroft, M. Rahmann, Arsenic poisoning of Bangladesh groundwater. Nature 1998, 395, 338.
Arsenic poisoning of Bangladesh groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVSrsLk%3D&md5=ad12f46504a973b1dce705ab23a8b89bCAS | 9759723PubMed |

[11]  M. Berg, H. C. Tran, T. C. Nguyen, H. V. Pham, R. Schertenleib, W. Giger, Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ. Sci. Technol. 2001, 35, 2621.
Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks1ems74%3D&md5=700b9d2037e997612e900c070f73b9efCAS | 11452583PubMed |

[12]  R. R. Shrestha, M. P. Shrestha, N. P. Upadhyay, R. Pradhan, R. Khadka, A. Maskey, M. Maharjan, S. Tuladhar, B. M. Dahal, K. Shrestha, Groundwater arsenic contamination, its health impact and mitigation program in Nepal. J. Environ. Sci. Health – A. Tox. Hazard. Subst. Environ. Eng. 2003, 38, 185.
Groundwater arsenic contamination, its health impact and mitigation program in Nepal.Crossref | GoogleScholarGoogle Scholar | 12635826PubMed |

[13]  D. A. Polya, M. Berg, A. G. Gault, Y. Takahashi, Arsenic in groundwaters of South-East Asia: with emphasis on Cambodia and Vietnam. Appl. Geochem. 2008, 23, 2968.
Arsenic in groundwaters of South-East Asia: with emphasis on Cambodia and Vietnam.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWkurzP&md5=06f4c651c585780948b73a28743b261cCAS |

[14]  D. A. Polya, A. G. Gault, N. J. Bourne, P. R. Lythgoe, D. A. Cooke, Coupled HPLC-ICP-MS analysis indicates highly hazardous concentrations of dissolved arsenic species are present in Cambodian wellwaters, in Plasma Source Mass Spectrometry: Applications and Emerging Technologies (Eds J. G. Holland, S. D. Tanner) 2003, pp. 127–140 (Royal Society of Chemistry: Cambridge, UK).

[15]  D. A. Polya, H. A. L. Rowland, A. G. Gault, N. H. Diebe, J. C. Jones, D. A. Cooke, Geochemistry of arsenic-rich shallow groundwaters in Cambodia. Geochim. Cosmochim. Acta 2004, 68, A520.

[16]  D. A. Polya, A. G. Gault, N. Diebe, P. Feldman, J. W. Rosenboom, E. Gilligan, D. Fredericks, A. H. Milton, M. Sampson, H. A. L. Rowland, P. R. Lythgoe, J. C. Jones, C. Middleton, D. A. Cooke, Arsenic hazard in shallow Cambodian groundwaters. Mineral. Mag. 2005, 69, 807.
Arsenic hazard in shallow Cambodian groundwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFCltrY%3D&md5=22a8558b2c89375f87b82a3c8187e61eCAS |

[17]  P. R. Feldman, J. W. Rosenboom, M. Saray, P. Navuth, C. Samnang, S. Iddings, Assessment of the chemical quality of drinking water in Cambodia. J. Water Health 2007, 5, 101.
Assessment of the chemical quality of drinking water in Cambodia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFKmurw%3D&md5=f359eb02956b3b257fb2f9a1ea69ce53CAS | 17402283PubMed |

[18]  M. Berg, C. Stengel, P. T. K. Trang, P. H. Viet, M. L. Sampson, M. Leng, S. Samreth, D. Fredericks, Magnitude of arsenic pollution in the Mekong and Red river deltas – Cambodia and Vietnam. Sci. Total Environ. 2007, 372, 413.
Magnitude of arsenic pollution in the Mekong and Red river deltas – Cambodia and Vietnam.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitl2msw%3D%3D&md5=9b6b78e337e931a57e98ec3224d079e1CAS | 17081593PubMed |

[19]  H. A. L. Rowland, A. G. Gault, P. R. Lythgoe, D. A. Polya, Geochemistry of aquifer sediments and arsenic-rich groundwaters in Cambodia. Appl. Geochem. 2008, 23, 3029.
Geochemistry of aquifer sediments and arsenic-rich groundwaters in Cambodia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWkurzF&md5=7bdec4825396a5ae958e5b2ad04acee9CAS |

[20]  J. Buschmann, M. Berg, C. Stengel, L. Winkel, M. L. Sampson, P. T. K. Trang, P. H. Viet, Contamination of drinking water resources in the Mekong delta floodplains: arsenic and other trace metals pose serious health risks to population. Environ. Int. 2008, 34, 756.
Contamination of drinking water resources in the Mekong delta floodplains: arsenic and other trace metals pose serious health risks to population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslarsbg%3D&md5=306002887565bf2535a78975b7c15bfbCAS | 18291528PubMed |

[21]  D. A. Polya, M. L. Polizzotto, S. Fendorf, L. Rodríguez Lado, A. Hegan, M. Lawson, H. A. L. Rowland, A. K. Giri, D. Mondal, C. Sovann, W. M. M. Al Lawati, B. E. van Dongen, P. Gilbert, A. Shantz, Arsenic in groundwaters of Cambodia, in Water Resources and Development in Southeast Asia (Eds K. Irvine, T. Murphy, V. Vanchan, S. Vermette) 2010, pp. 31–56 (Pearson Learning Solutions: New York).

[22]  R. Kubota, T. Kunito, T. Agusa, J. Fujihara, I. Monirith, H. Iwata, A. Subramanian, T. Seang Tana, S. Tanabe, Urinary 8-hydroxy-2′-deoxyguanosine in inhabitants chronically exposed to arsenic in groundwater in Cambodia. J. Environ. Monit. 2006, 8, 293.
Urinary 8-hydroxy-2′-deoxyguanosine in inhabitants chronically exposed to arsenic in groundwater in Cambodia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cmt7Y%3D&md5=31f683057c12b77f0a3fdd9466121b63CAS | 16470262PubMed |

[23]  A. G. Gault, H. A. L. Rowland, J. M. Charnock, R. A. Wogelius, I. Gomez-Morilla, S. Vong, M. Leng, S. Samreth, M. L. Sampson, D. A. Polya, Arsenic in hair and nails of individuals exposed to arsenic-rich groundwaters in Kandal Province, Cambodia. Sci. Total Environ. 2008, 393, 168.
Arsenic in hair and nails of individuals exposed to arsenic-rich groundwaters in Kandal Province, Cambodia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFarsL0%3D&md5=48d4cda2285b1392b8469e3ced86bbbcCAS | 18234288PubMed |

[24]  M. L. Sampson, B. Bostick, H. Chiew, J. M. Hagan, A. Shantz, Arsenicosis in Cambodia: case studies and policy response. Appl. Geochem. 2008, 23, 2977.
Arsenicosis in Cambodia: case studies and policy response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWkurzI&md5=60ac1fc9c1286067d21e394dd0cf678dCAS |

[25]  D. N. G. Mazumder, K. K. Majumdar, S. C. Santra, H. Kol, C. Vicheth, Occurrence of arsenicosis in a rural village of Cambodia. J. Environ. Sci. Health – A. Tox. Hazard. Subst. Environ. Eng. 2009, 44, 480.
Occurrence of arsenicosis in a rural village of Cambodia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFyqsL8%3D&md5=c22fd9f2f6a01cf11e4131525744028dCAS |

[26]  T. T. G. Luu, S. Sthiannopkao, K. W. Kim, Arsenic and other trace elements contamination in groundwater and a risk assessment study for the residents in the Kandal province of Cambodia. Environ. Int. 2009, 35, 455.
Arsenic and other trace elements contamination in groundwater and a risk assessment study for the residents in the Kandal province of Cambodia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVOnsrs%3D&md5=0ae1b0ebf84d6edc9a5db4c7936116daCAS |

[27]  D. Fredericks, Ministry of Rural Development Arsenic Secretariat, Situation analysis: arsenic contamination in groundwater in Cambodia 2004 (UNICEF: Phnom Penh, Cambodia).

[28]  L. Rodríguez Lado, D. Polya, L. Winkel, M. Berg, A. Hegan, Modelling arsenic hazard in Cambodia: a geostatistical approach using ancillary data. Appl. Geochem. 2008, 23, 3010.
Modelling arsenic hazard in Cambodia: a geostatistical approach using ancillary data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWkurzL&md5=e04ff8e753dd450babff798613473b29CAS |

[29]  L. Winkel, M. Berg, M. Amini, S. J. Hug, A. C. Johnson, Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nat. Geosci. 2008, 1, 536.
Predicting groundwater arsenic contamination in Southeast Asia from surface parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptFOqsbs%3D&md5=a051531b43bbcd4a0d53a90e8423fc2bCAS |

[30]  M. L. Polizzotto, B. D. Kocar, S. G. Benner, M. Sampson, S. Fendorf, Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 2008, 454, 505.
Near-surface wetland sediments as a source of arsenic release to ground water in Asia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovV2mtLs%3D&md5=c6b5cb4d41410848c3e8658837b86453CAS | 18650922PubMed |

[31]  M. Lawson, D. A. Polya, A. J. Boyce, C. Bryant, D. Mondal, A. Shantz, C. J. Ballentine, Pond derived organic carbon driving changes in arsenic hazard found in Asian groundwaters. Environ. Sci. Technol. 2013, 47, 7085.
| 1:CAS:528:DC%2BC3sXptFeisb0%3D&md5=e8b44f76eb273f56a777dd117cd1be0eCAS | 23755892PubMed |

[32]  MRC UNEP, Mekong River Basin Diagnostic Study 1997 (Mekong River Commission: Bangkok).

[33]  MRC, People and the Environment Atlas of the Lower Mekong Basin 2003 (Mekong River Commission: Bangkok).

[34]  J. N. Miller, J. C. Miller, Statistics and Chemometrics for Analytical Chemistry, 5th edn 2005 (Pearson Education Limited: Harlow, UK).

[35]  IUSS Working Group WRB, World reference base for soil resources 2006. World Soil Resources Reports number 103 2006 (Food and Agriculture Organization of the United Nations: Rome).

[36]  The Atlas of Cambodia: National Poverty and Environment Maps 2006 (Save Cambodia's Wildlife: Phnom Penh, Cambodia).

[37]  General population census of Cambodia 2008: National Report on Final Census Results 2009 (National Institute of Statistics: Phnom Penh, Cambodia).

[38]  Cambodia Inter-Censal Population Survey 2013 (National Institute of Statistics: Phnom Penh, Cambodia). Available at http://countryoffice.unfpa.org/cambodia/drive/CIPS_Report_English_Final.pdf [Verified 21 July 2014].

[39]  C. F. Harvey, C. H. Swartz, A. B. M. Badruzzaman, N. Keon-Blute, W. Yu, M. A. Ali, J. Jay, R. Beckie, V. Niedan, D. Brabander, P. M. Oates, K. N. Ashfaque, S. Islam, H. F. Hemond, M. F. Ahmed, Arsenic mobility and groundwater extraction in Bangladesh. Science 2002, 298, 1602.
Arsenic mobility and groundwater extraction in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xosl2ktb0%3D&md5=15bf4a1b66c8fa3cada9b42a1c6cdd03CAS | 12446905PubMed |

[40]  S. Sengupta, J. M. McArthur, A. Sarkar, M. J. Leng, P. Ravenscroft, R. J. Howarth, D. M. Banerjee, Do ponds cause arsenic-pollution of groundwater in the Bengal Basin? An answer from West Bengal. Environ. Sci. Technol. 2008, 42, 5156.
Do ponds cause arsenic-pollution of groundwater in the Bengal Basin? An answer from West Bengal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVGku7o%3D&md5=0b542a44bb43cadf2447ad5138de3759CAS | 18754363PubMed |

[41]  D. A. Polya, L. Charlet, Rising arsenic risk? Nat. Geosci. 2009, 2, 383.
Rising arsenic risk?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Ortbc%3D&md5=d91435bc2e0064ee363a05645439a394CAS |

[42]  R. B. Neumann, K. N. Ashfaque, A. B. M. Badruzzaman, M. A. Ali, J. K. Shoemaker, C. F. Harvey, Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nat. Geosci. 2010, 3, 46.
Anthropogenic influences on groundwater arsenic concentrations in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Slu7zO&md5=96189f8d33ec0909d46ed5c5ec0edc43CAS |

[43]  A. G. Gault, D. A. Polya, P. R. Lythgoe, M. L. Farquhar, J. M. Charnock, R. A. Wogelius, Arsenic speciation in surface waters and sediments in a contaminated waterway: an IC–ICP-MS and XAS based study. Appl. Geochem. 2003, 18, 1387.
Arsenic speciation in surface waters and sediments in a contaminated waterway: an IC–ICP-MS and XAS based study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1aluro%3D&md5=4cb8524f9cb02e7a5559d2ac041adc05CAS |

[44]  D. Mondal, M. Banerjee, M. Kundu, N. Banerjee, U. Bhattachrya, A. K. Giri, B. Ganguli, S. Sen Roy, D. A. Polya, Comparison of drinking water, raw rice and cooking of rice as asniuc exposure routes in three contrasting areas of West Bengal, India. Environ. Geochem. Health 2010, 32, 463.
Comparison of drinking water, raw rice and cooking of rice as asniuc exposure routes in three contrasting areas of West Bengal, India.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlahs7jJ&md5=e689d5923b576a1fca2b35a6e4de9af1CAS | 20505983PubMed |

[45]  M. Banerjee, N. Banerjee, P. Bhattacharjee, D. Mondal, P. R. Lythgoe, M. Martinez, J. Pan, D. A. Polya, A. K. Giri, High arsenic rice is associated with elevated genotoxic effects in humans. Scientific Reports 2013, 3, 2195.
High arsenic rice is associated with elevated genotoxic effects in humans.Crossref | GoogleScholarGoogle Scholar | 23873074PubMed |

[46]  W. H. Yu, C. M. Harvey, C. F. Harvey, Arsenic in groundwater in Bangladesh: a geostatistical and epidemiological framework for evaluating health effects and potential remedies. Water Resour. Res. 2003, 39, 17.
Arsenic in groundwater in Bangladesh: a geostatistical and epidemiological framework for evaluating health effects and potential remedies.Crossref | GoogleScholarGoogle Scholar |