Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Scaling up: fulfilling the promise of X-ray microprobe for biogeochemical research

Brandy M. Toner A D , Sarah L. Nicholas A and Jill K. Coleman Wasik B C
+ Author Affiliations
- Author Affiliations

A Land and Atmospheric Science Program, Department of Soil, Water, and Climate, University of Minnesota – Twin Cities, St Paul, MN 55108, USA.

B Water Resources Science Department, University of Minnesota – Twin Cities, St Paul, MN 55108, USA.

C St Croix Watershed Research Station, Science Museum of Minnesota, Marine on St Croix, MN 55047, USA.

D Corresponding author. Email: toner@umn.edu

Environmental Chemistry 11(1) 4-9 https://doi.org/10.1071/EN13162
Submitted: 16 May 2013  Accepted: 18 December 2013   Published: 19 February 2014

Environmental context. Although biogeochemical processes in the environment are often considered on large spatial scales, critical processes can occur at fine-spatial scales. Quantifying these processes is a challenge, but significant recent developments in microprobe X-ray absorption spectroscopy in terms of data collection and analysis greatly facilitate micro-scale observations at the sample-level. These mapping methods create datasets that can be integrated with bulk observations with the potential for widespread application to biogeochemical research.

Abstract. Biogeochemists measure and model fluxes of materials among environmental compartments, often considering large spatial-scales within and among ecosystems. However, critical biogeochemical processes occur at fine-spatial scales, and quantifying these processes is a challenge. Recent developments in microprobe X-ray absorption spectroscopy (XAS) data collection and analysis allow for micro-scale observations and quantification of chemical species at the sample-level. These speciation mapping methods create datasets that can be integrated with bulk observations through empirical and theoretical modelling. Speciation mapping approaches are possible with existing instrumentation, but the widespread application to biogeochemical research is hindered by the small number of instruments currently available.


References

[1]  E. Lombi, J. Susini, Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives. Plant Soil 2009, 320, 1.
Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFGjtLo%3D&md5=620f8be30a63879688ab9f76568d105eCAS |

[2]  E. Lombi, G. M. Hettiararchchi, K. G. Scheckel, Advanced in situ spectroscopic techniques and their applications in environmental biogeochemistry: introduction to the special section. J. Environ. Qual. 2011, 40, 659.
Advanced in situ spectroscopic techniques and their applications in environmental biogeochemistry: introduction to the special section.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1OqsLc%3D&md5=9c350d1965c5155df2467023fe7f2253CAS | 21546653PubMed |

[3]  M. C. Duff, M. Newville, D. B. Hunter, P. M. Bertsch, S. R. Sutton, I. R. Triay, D. T. Vaniman, P. Eng, M. L. Rivers, Micro-XAS studies with sorbed plutonium on tuff. J. Synchrotron Radiat. 1999, 6, 350.
Micro-XAS studies with sorbed plutonium on tuff.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksFCnsr4%3D&md5=b45af3f7e48c797d39668e4a5cab90daCAS | 15263304PubMed |

[4]  D. B. Hunter, P. M. Bertsch, In situ examination of uranium contaminated soil particles by micro-X-ray absorption and micro-fluorescence spectroscopies. J. Radioanal. Nucl. Chem. 1998, 234, 237.
In situ examination of uranium contaminated soil particles by micro-X-ray absorption and micro-fluorescence spectroscopies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvV2nsrc%3D&md5=9a6467c2de565bec14bde2e2398dac18CAS |

[5]  A. Manceau, B. Lanson, M. L. Schlegel, J. C. Harge, M. Musso, L. Eybert-Berard, J.-L. Hazemann, D. Chateigner, G. M. Lamble, Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy. Am. J. Sci. 2000, 300, 289.
Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltFOgt7o%3D&md5=177a2990e0d46a1fcb673a1e2fd5b787CAS |

[6]  R. J. Reeder, M. Nugent, C. D. Tait, D. E. Morris, S. M. Heald, K. M. Beck, W. P. Hess, A. Lanzirotti, Coprecipitation of uranium(VI) with calcite: XAFS, micro-XAS, and luminescence characterization. Geochim. Cosmochim. Acta 2001, 65, 3491.
Coprecipitation of uranium(VI) with calcite: XAFS, micro-XAS, and luminescence characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVOrurY%3D&md5=8c68801d452c73f8e5cdaa3a38c8174cCAS |

[7]  D. Strawn, H. Doner, M. Zavarin, S. McHugo, Microscale investigation into the geochemistry of arsenic, selenium, and iron in soil developed in pyritic shale materials. Geoderma 2002, 108, 237.
Microscale investigation into the geochemistry of arsenic, selenium, and iron in soil developed in pyritic shale materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFGqt70%3D&md5=f590dfa75cf828432a70f41f50c0b3fdCAS |

[8]  C. S. Chan, S. C. Fakra, D. C. Edwards, D. Emerson, J. F. Banfield, Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochim. Cosmochim. Acta 2009, 73, 3807.
Iron oxyhydroxide mineralization on microbial extracellular polysaccharides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVyktbo%3D&md5=625bb9d83a2cb416ce50fae8c09773ccCAS |

[9]  C. M. Hansel, C. A. Zeiner, C. M. Santelli, S. M. Webb, MnII oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. Proc. Natl. Acad. Sci. USA 2012, 109, 12621.
MnII oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtleqs77F&md5=fbad9229c1f2f96987bb63e87cd3ae11CAS | 22802654PubMed |

[10]  B. N. Orcutt, W. Bach, K. Becker, A. T. Fisher, M. Hentscher, B. M. Toner, C. G. Wheat, K. J. Edwards, Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J. 2010, 4, 1.

[11]  S. Datta, A. M. Rule, J. N. Mihalic, S. N. Chillrud, B. C. Bostick, J. P. Ramos-Bonilla, I. Han, L. M. Polyak, A. S. Geyh, P. N. Breysse, Use of X-ray absorption spectroscopy to speciate manganese in airborne particulate matter from five counties across the United States. Environ. Sci. Technol. 2012, 46, 3101.
Use of X-ray absorption spectroscopy to speciate manganese in airborne particulate matter from five counties across the United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSqsbk%3D&md5=de8fca9cb034f86709213827d2c91609CAS | 22309075PubMed |

[12]  E. J. Elzinga, Y. Gao, J. P. Fitts, R. Tappero, Iron speciation in urban dust. Atmos. Environ. 2011, 45, 4528.
Iron speciation in urban dust.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlCgu7Y%3D&md5=97ef55f023df81a26fc51fb4a81166faCAS |

[13]  M. M. Shafer, B. M. Toner, J. Overdier, J. J. Schauer, S. C. Fakra, S. Hu, J. D. Herner, A. Ayala, Chemical speciation of vanadium in particulate matter emitted from diesel vehicles and urban atmospheric aerosols. Environ. Sci. Technol. 2012, 46, 189.
Chemical speciation of vanadium in particulate matter emitted from diesel vehicles and urban atmospheric aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSqsbvL&md5=c2293d085cec5dcfb020e3287f7907a6CAS | 22050708PubMed |

[14]  J. A. Breier, B. M. Toner, S. C. Fakra, M. A. Marcus, S. N. White, A. M. Thurnherr, C. R. German, Sulfur, sulfides, oxides and organic matter aggregated in submarine hydrothermal plumes at 9°50′N East Pacific Rise. Geochim. Cosmochim. Acta 2012, 88, 216.
Sulfur, sulfides, oxides and organic matter aggregated in submarine hydrothermal plumes at 9°50′N East Pacific Rise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvVOrurw%3D&md5=f64a2a8efbbeb2e6d453cf883b26824fCAS |

[15]  P. J. Lam, J. K. B. Bishop, C. C. Henning, M. A. Marcus, G. A. Waychunas, I. Y. Fung, Wintertime phytoplankton bloom in the subarctic Pacific supported by continental margin iron. Global Biogeochem. Cycles 2006, 20, GB1006.
Wintertime phytoplankton bloom in the subarctic Pacific supported by continental margin iron.Crossref | GoogleScholarGoogle Scholar |

[16]  C. H. Lamborg, K. O. Buesseler, P. J. Lam, Sinking fluxes of minor and trace elements in the North Pacific Ocean measured during the VERTIGO program. Deep Sea Res. Part II Top. Stud. Oceanogr. 2008, 55, 1564.
Sinking fluxes of minor and trace elements in the North Pacific Ocean measured during the VERTIGO program.Crossref | GoogleScholarGoogle Scholar |

[17]  M. A. Marcus, A. Manceau, M. Kersten, Mn, Fe, Zn and As speciation in a fast-growing ferromanganese marine nodule. Geochim. Cosmochim. Acta 2004, 68, 3125.
Mn, Fe, Zn and As speciation in a fast-growing ferromanganese marine nodule.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlyitbo%3D&md5=92138c09ec21a8a8c7fe251b2a6b43a0CAS |

[18]  B. M. Toner, S. C. Fakra, S. J. Manganini, C. M. Santelli, M. A. Marcus, J. W. Moffett, O. Rouxel, C. R. German, K. J. Edwards, Preservation of iron(II) by carbon-rich matrices in hydrothermal plumes. Nat. Geosci. 2009, 2, 197.
Preservation of iron(II) by carbon-rich matrices in hydrothermal plumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVCgt7Y%3D&md5=d87f7104e9f85ec8683465d4e0302ea8CAS |

[19]  A. S. Templeton, E. J. Knowles, D. L. Eldridge, B. W. Arey, A. C. Dohnalkova, S. M. Webb, J. V. Bailey, B. M. Tebo, H. Staudigel, A seafloor microbial biome hosted within incipient ferromanganese crusts. Nat. Geosci. 2009, 2, 872.
A seafloor microbial biome hosted within incipient ferromanganese crusts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyqsb%2FL&md5=25af5bdf8683a02829dd90d99e053839CAS |

[20]  C. L. Peacock, E. M. Moon, Oxidative scavenging of thallium by birnessite: explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates. Geochim. Cosmochim. Acta 2012, 84, 297.
Oxidative scavenging of thallium by birnessite: explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltFyqsLs%3D&md5=f31dcff228511ac1c9a0a50fc72f0ac4CAS |

[21]  A. Manceau, M. A. Marcus, N. Tamura, Quantitative speciation of heavy metals in soils and sediments by synchrotron x-ray techniques, in Applications of Synchrotron Radiation in Low-Temperature Geochemistry and Environmental Science (Eds P. A. Fenter, M. L. Rivers, N. C. Sturchio, S. R. Sutton) 2002, pp. 341–428 (Mineralogical Society of America: Washington, DC).

[22]  S. L. Lohr, Cluster sampling with equal probabilities, in Sampling: Design and Analysis 1999, pp. 131–178. (Duxbury Press: Boston, MA).

[23]  T. Zeng, W. A. Arnold, B. M. Toner, Microscale characterization of sulfur speciation in lake sediments. Environ. Sci. Technol. 2013, 47, 1287.
| 1:CAS:528:DC%2BC3sXhslGguw%3D%3D&md5=8d74231f6a03b400ed7bd5d8d76c932eCAS | 23282039PubMed |

[24]  B. E. Etschmann, C. G. Ryan, J. Brugger, R. Kirkham, R. M. Hough, G. Moorhead, D. P. Siddons, G. De Geronimo, A. Kuczewski, P. Dunn, D. Paterson, M. D. de Jonge, D. L. Howard, P. Davey, M. Jensen, Reduced As components in highly oxidized environments: evidence from full spectrum imaging using the Maia massively parallel detector. Am. Mineral. 2010, 95, 884.
Reduced As components in highly oxidized environments: evidence from full spectrum imaging using the Maia massively parallel detector.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslKksLg%3D&md5=04d5b580c649f0654432b1f7518f3caaCAS |

[25]  B. M. Toner, M. A. Marcus, K. J. Edwards, O. Rouxel, C. R. German, Measuring the form of iron in hydrothermal plume particles. Oceanography 2012, 25, 209.
Measuring the form of iron in hydrothermal plume particles.Crossref | GoogleScholarGoogle Scholar |

[26]  I. J. Pickering, E. Y. Sneeden, R. C. Prince, E. Block, H. H. Harris, G. Hirsch, G. N. George, Localizing the chemical forms of sulfur in vivo using X-ray fluorescence spectroscopic imaging: application to onion (Allium cepa) tissues. Biochemistry 2009, 48, 6846.
Localizing the chemical forms of sulfur in vivo using X-ray fluorescence spectroscopic imaging: application to onion (Allium cepa) tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFKmsLo%3D&md5=b6ad9f33ec650a8ab460a75788c6872eCAS | 19463015PubMed |

[27]  L. E. Mayhew, S. M. Webb, A. S. Templeton, Microscale imaging and identification of Fe oxidation state, speciation, and distribution in complex geological media. Environ. Sci. Technol. 2011, 45, 4468.
Microscale imaging and identification of Fe oxidation state, speciation, and distribution in complex geological media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFajtLw%3D&md5=42ba32ddf8efc3df136ad89a2cee0811CAS | 21517061PubMed |

[28]  P. J. Lam, D. C. Ohnemus, M. A. Marcus, The speciation of marine particulate iron adjacent to active and passive continental margins. Geochim. Cosmochim. Acta 2012, 80, 108.
The speciation of marine particulate iron adjacent to active and passive continental margins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsleqtb8%3D&md5=93afe1c035b11cecfd3b6b0ff9c258a8CAS |

[29]  J. K. Coleman Wasik, B. M. Toner, D. R. Engstrom, P. E. Drevnick, M. A. Marcus, Investigating the effects of hydrologic fluctuations on organic sulfur speciation in boreal peatlands. Mineral. Mag. 2011, 75, A3043.

[30]  S. L. Nicholas, B. M. Toner, M. L. Erickson, A. R. Knaeble, Identifying the arsenic source in glacial aquifer sediments, west-central Minnesota, USA. Mineral. Mag. 2012, 76, A1706.