Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

The development of electrochemical methods for determining nanoparticles in the environment. Part I. Voltammetry and in-situ electrochemical scanning tunnelling microscopy (EC-STM) study of FeS in sodium chloride solutions

M. Marguš A , N. Batina B and I. Ciglenečki A C
+ Author Affiliations
- Author Affiliations

A Division for Marine and Environmental Research, Institute Ruđer Bošković, Bijenička 54, 10000 Zagreb, Croatia.

B Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, 09340 México, D.F., México.

C Corresponding author. Email address: irena@irb.hr

Environmental Chemistry 11(2) 181-186 https://doi.org/10.1071/EN13121
Submitted: 3 July 2013  Accepted: 16 September 2013   Published: 9 December 2013

Environmental context. The dramatic change in physical and chemical characteristics that substances experience at reduced length scales (1–100 nm), together with a potential risk of ecotoxicity, are two of the reasons for the scientific interest in nanoparticles. The current understanding of the behaviour and fate of nanoparticles in natural waters is limited because of a lack of efficient methods for their characterisation. Electrochemistry is a promising tool for the determination and characterisation of nanoparticles in the natural environment.

Abstract. In-situ electrochemical scanning tunnelling microscopy (EC-STM) has been used for the characterisation and determination of FeS nanoparticles (NPs) at a Au(111) electrode in NaCl solutions oversaturated with FeS. In parallel, voltammetric measurements in different electrode systems (Hg and Au) have been conducted. Particle deposition was studied in relation to variations in applied and scanning electrode potentials over a range of 0.1 to –1.5 V v. Ag/AgCl. EC-STM images obtained on the Au(111) electrode revealed the presence of FeS NPs, accompanied by a drastic transformation in the electrode’s surface topography during scanning from 0.1 to –1.2 V. A majority of FeS NPs (diameter 2–5 nm) were detected in the potential range of –0.15 to –0.25 V v. Ag/AgCl. The EC-STM results are in very good agreement with previous voltammetric measurements at Hg and Au electrodes. The combination of in-situ EC-STM and cyclic voltammetry complementary techniques appears to be a powerful tool for the characterisation of complex electrochemical systems such as chalcogenide NPs in aqueous solutions.

Additional keywords: Au(111) and Hg surface, electrochemistry


References

[1]  G. W. Luther, D. J. Rickard, Metal sulfide cluster complexes and their biogeochemical importance in the environment. J. Nanopart. Res. 2005, 7, 389.
Metal sulfide cluster complexes and their biogeochemical importance in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFWhsb0%3D&md5=7e6c0f3f30652606909d075ca6750516CAS |

[2]  T. F. Rozan, M. E. Lassman, D. P. Ridge, G. W. Luther, Evidence for Fe, Cu and Zn complexation as multinuclear sulfide clusters in oxic river waters. Nature 2000, 406, 879.
Evidence for Fe, Cu and Zn complexation as multinuclear sulfide clusters in oxic river waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsVGisbc%3D&md5=25124f0f5197102b2b2642ceb2598ab8CAS | 10972287PubMed |

[3]  K. Sukola, F. Y. Wang, A. Tessier, Metal-sulfide species in oxic waters. Anal. Chim. Acta 2005, 528, 183.
Metal-sulfide species in oxic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslyiug%3D%3D&md5=17e3c8c89aa2ae38f5da3c2b75a02059CAS |

[4]  K. M. Mullaugh, G. W. Luther, Spectroscopic determination of the size of cadmium sulfide nanoparticles formed under environmentally relevant conditions. J. Environ. Monit. 2010, 12, 890.
Spectroscopic determination of the size of cadmium sulfide nanoparticles formed under environmentally relevant conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFGqsb4%3D&md5=21f1538f58f81f3d9b34443aae9fba5eCAS | 20383370PubMed |

[5]  K. M. Mullaugh, G. W. Luther, Growth kinetics and long term stability of CdS nanoparticles in aqueous solution under ambient conditions. J. Nanopart. Res. 2011, 13, 393.
Growth kinetics and long term stability of CdS nanoparticles in aqueous solution under ambient conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Skt7g%3D&md5=eddc916f67e86a2059c6d66a3fc95868CAS |

[6]  J. W. Morse, T. Arakaki, Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochim. Cosmochim. Acta 1993, 57, 3635.
Adsorption and coprecipitation of divalent metals with mackinawite (FeS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmtlSgu74%3D&md5=cbfd06aba5ea13c08f81bd78404e98eaCAS |

[7]  A. Arakaki, J. W. Morse, Coprecipitation and adsorption of MnII with mackinawite (FeS) under conditions similar to those found in anoxic sediments. Geochim. Cosmochim. Acta 1993, 57, 9.
Coprecipitation and adsorption of MnII with mackinawite (FeS) under conditions similar to those found in anoxic sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXosVKmsA%3D%3D&md5=1cc3943eb38b86b3ee392bdcd94d8468CAS |

[8]  M. J. Wharton, B. Atkins, J. M. Charnock, F. R. Livens, R. A. Pattrick, D. Collinson, An X-ray absorption spectroscopy study of the coprecipitation of Tc and Re with mackinawite (FeS). Appl. Geochem. 2000, 15, 347.
An X-ray absorption spectroscopy study of the coprecipitation of Tc and Re with mackinawite (FeS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFSmtr0%3D&md5=86e15b093b3f6a4b6161aaed8dad601fCAS |

[9]  G. R. Helz, T. P. Vorlicek, M. D. Kahn, Molybdenum scavenging by iron monosulfide. Environ. Sci. Technol. 2004, 38, 4263.
Molybdenum scavenging by iron monosulfide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFahs7o%3D&md5=9ef63971a7646798c5a24191668e749fCAS | 15382851PubMed |

[10]  D. Rickard, J. W. Morse, Acid volatile sulfide (AVS). Mar. Chem. 2005, 97, 141.
Acid volatile sulfide (AVS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2qurrI&md5=e45ff46074e2c03f20fac6696d1a775dCAS |

[11]  I. Ciglenečki, D. Krznarić, G. R. Helz, Voltammetry of copper sulfide particles and nanoparticles; investigation of the cluster hypothesis. Environ. Sci. Technol. 2005, 39, 7492.
Voltammetry of copper sulfide particles and nanoparticles; investigation of the cluster hypothesis.Crossref | GoogleScholarGoogle Scholar | 16245820PubMed |

[12]  D. Krznarić, G. R. Helz, I. Ciglenečki, Prospect of determining copper sulfide nanoparticles by voltammetry: a potential artifact in supersaturated solution. J. Electroanal. Chem. 2006, 590, 207.
Prospect of determining copper sulfide nanoparticles by voltammetry: a potential artifact in supersaturated solution.Crossref | GoogleScholarGoogle Scholar |

[13]  E. Bura-Nakić, D. Krznarić, D. Jurašin, G. R. Helz, I. Ciglenečki, Voltammetric characterization of metal sulfide particles and nanoparticles in model solutions and natural waters. Anal. Chim. Acta 2007, 594, 44.
Voltammetric characterization of metal sulfide particles and nanoparticles in model solutions and natural waters.Crossref | GoogleScholarGoogle Scholar | 17560384PubMed |

[14]  D. Krznarić, G. R. Helz, E. Bura-Nakić, D. Jurašin, Accumulation mechanism for metal chalcogenide nanoparticles at Hg0 electrodes: copper sulfide example. Anal. Chem. 2008, 80, 742.
Accumulation mechanism for metal chalcogenide nanoparticles at Hg0 electrodes: copper sulfide example.Crossref | GoogleScholarGoogle Scholar | 18183961PubMed |

[15]  E. Bura-Nakić, A. Róka, I. Ciglenečki, G. Inzelt, Electrochemical quartz crystal microbalance study of FeS particles attached to Au surface. Electroanalysis 2009, 21, 1699.
Electrochemical quartz crystal microbalance study of FeS particles attached to Au surface.Crossref | GoogleScholarGoogle Scholar |

[16]  E. Bura-Nakić, D. Krznarić, G. R. Helz, I. Ciglenečki-Jušić, Characterization of iron sulfide species in model solutions by cyclic voltammetry. revisiting an old problem. Electroanalysis 2011, 23, 1376.
Characterization of iron sulfide species in model solutions by cyclic voltammetry. revisiting an old problem.Crossref | GoogleScholarGoogle Scholar |

[17]  G. R. Helz, I. Ciglenečki, D. Krznarić, E. Bura-Nakić, Voltammetry of sulfide nanoparticles and the FeS(aq) problem, in Aquatic Redox Chemistry (Eds P. G. Tratnyek, T. J. Grundl, S. B. Haderlein) 2011, pp. 265–282 (American Chemical Society: Washington, DC).

[18]  E. Bura-Nakić, V. Eric, I. Ciglenečki, Electrochemical and colorimetric measurements show the dominant role of FeS in a permanently anoxic lake. Environ. Sci. Technol. 2013, 47, 741.
Electrochemical and colorimetric measurements show the dominant role of FeS in a permanently anoxic lake.Crossref | GoogleScholarGoogle Scholar | 23240551PubMed |

[19]  C. Vericat, J. N. Andersen, M. E. Vela, R. C. Salvarezza, Dynamics of potential-dependent transformations in sulfur adlayers on Au(111) electrodes. J. Phys. Chem. B 2000, 104, 302.
Dynamics of potential-dependent transformations in sulfur adlayers on Au(111) electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVelsLw%3D&md5=7966f916441483890639c872df08ef9eCAS |

[20]  R. L. McCarley, Y. T. Kim, J. Bard, Scanning tunneling microscopy and quartz crystal microbalance studies of gold exposed to sulfide, thiocyanate, and n-octadecanethiol. J. Phys. Chem. 1993, 97, 211.
Scanning tunneling microscopy and quartz crystal microbalance studies of gold exposed to sulfide, thiocyanate, and n-octadecanethiol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisl2jsg%3D%3D&md5=67f1da2f61e1a1916166235b78fc6324CAS |

[21]  C. Vericat, M. E. Vela, G. Andreasen, R. C. Salvarezza, L. Vazquez, J. A. Martin-Gago, Sulfur–substrate interactions in spontaneously formed sulfur adlayers on Au(111). Langmuir 2001, 17, 4919.
Sulfur–substrate interactions in spontaneously formed sulfur adlayers on Au(111).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFCrt70%3D&md5=e0fead11e547f57e7b0a72466fc15104CAS |

[22]  C. Vericat, M. E. Vela, G. A. Andreasen, R. C. Salvarezza, Following adsorption kinetics at electrolyte/metal interfaces through crystal truncation scattering: sulfur on Au(111). Phys. Rev. Lett. 2003, 90, 075506.
Following adsorption kinetics at electrolyte/metal interfaces through crystal truncation scattering: sulfur on Au(111).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s7itFWjtg%3D%3D&md5=ce7da25452fa7a6cff2a4f32d0ccf30eCAS | 12633245PubMed |

[23]  M. M. Biener, J. Biener, C. M. Friend, Sulfur-induced mobilization of Au surface atoms on Au(111) studied by real-time STM. Surf. Sci. 2007, 601, 1659.
Sulfur-induced mobilization of Au surface atoms on Au(111) studied by real-time STM.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1OjsLo%3D&md5=e6ddb38293927bb34af7f4e614c310bfCAS |

[24]  D. M. Lay, K. Varazo, J. L. Stickney, Formation of sulfur atomic layers on gold from aqueous solutions of sulfide and thiosulfate: studies using EC-STM, UHV-EC, and TLEC. Langmuir 2003, 19, 8416.
Formation of sulfur atomic layers on gold from aqueous solutions of sulfide and thiosulfate: studies using EC-STM, UHV-EC, and TLEC.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVemt7s%3D&md5=bf1f5b6f6f81df5c93bdbae5a26b4456CAS |

[25]  C. Schlaup, D. Friebel, P. Broekmann, K. Wandelt, Potential dependent adlayer structures of a sulfur-covered Au(111) electrode in alkaline solution: an in situ STM study. Surf. Sci. 2008, 602, 864.
Potential dependent adlayer structures of a sulfur-covered Au(111) electrode in alkaline solution: an in situ STM study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVOiur4%3D&md5=873b254cdaefe81e0aca62b4f49618eaCAS |

[26]  C. Vericat, M. E. Vela, J. Gago, R. C. Salvarezza, Sulfur electroadsorption on Au(111). Electrochim. Acta 2004, 49, 3643.
Sulfur electroadsorption on Au(111).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFeks7Y%3D&md5=cbe571aeee6e8e1dd33f7482ee09d9efCAS |

[27]  D. M. Kolb, A. S. Dakouri, N. Batina, The surface structure of gold single-crystal electrodes, in Nanoscale Probes of the Solid/Liquid Interface, NATO ASI Series C, vol. E 288 (Eds A. A. Gewirth, H. Siegenthaler) 1995, pp. 1–22 (Dordrecht).

[28]  M. Giesen, D. M. Kolb, Influence of anion adsorption on the step dynamics on Au(111) electrodes. Surf. Sci. 2000, 468, 149.
Influence of anion adsorption on the step dynamics on Au(111) electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFGisrk%3D&md5=91114f2c7153ad283f7bc158284ddd82CAS |

[29]  M. Kunitake, N. Batina, K. Itaya, Self-organized porphyrin array on iodine-modified Au(111) in electrolyte solutions: in situ scanning tunneling microscopy study. Langmuir 1995, 11, 2337.
Self-organized porphyrin array on iodine-modified Au(111) in electrolyte solutions: in situ scanning tunneling microscopy study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsFCrtbg%3D&md5=7ca90cfd830bb60865adc16621d3fbbdCAS |

[30]  N. Batina, M. Kunitake, K. Itaya, Highly ordered molecular arrays formed on iodine-modified Au(111) in solution: in situ STM imaging. J. Electroanal. Chem. 1996, 405, 245.
Highly ordered molecular arrays formed on iodine-modified Au(111) in solution: in situ STM imaging.Crossref | GoogleScholarGoogle Scholar |

[31]  E. Abelev, N. Sezin, Y. Ein-Eli, An alternative isolation of tungsten tips for a scanning tunneling microscope. Rev. Sci. Instrum. 2005, 76, 106105.
An alternative isolation of tungsten tips for a scanning tunneling microscope.Crossref | GoogleScholarGoogle Scholar |

[32]  E. Bura-Nakić, A. Róka, I. Ciglenečki, G. Inzelt, Electrochemical nanogravimetric studies of sulfur/sulfide redox processes on gold surface. J. Solid State Electrochem. 2009, 13, 1935.
Electrochemical nanogravimetric studies of sulfur/sulfide redox processes on gold surface.Crossref | GoogleScholarGoogle Scholar |

[33]  I. Ciglenečki, E. Bura-Nakić, G. Inzelt, Voltammetry as an alternative tool for trace metal detection in peloid marine sediments. Electroanalysis 2007, 19, 1437.
Voltammetry as an alternative tool for trace metal detection in peloid marine sediments.Crossref | GoogleScholarGoogle Scholar |

[34]  G. K. Parker, K. M. Watling, G. A. Hope, R. Woods, A SERS spectroelectrochemical investigation of the interaction of sulfide species with gold surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2008, 318, 151.
A SERS spectroelectrochemical investigation of the interaction of sulfide species with gold surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtl2ks7k%3D&md5=6f6df99d9136ec353bc590b5120d79b2CAS |

[35]  X. Gao, Y. Zhang, M. J. Weaver, Observing surface chemical transformations by atomic-resolution scanning tunneling microscopy: sulfide electrooxidation on gold(111). J. Phys. Chem. 1992, 96, 4156.
Observing surface chemical transformations by atomic-resolution scanning tunneling microscopy: sulfide electrooxidation on gold(111).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XisVeks7c%3D&md5=3f81e377e05e98701fcb015db1304c3dCAS |

[36]  Z. Shi, J. Lipkowski, Chloride adsorption on the Au(111) electrode surface. J. Electroanal. Chem. 1996, 403, 225.
Chloride adsorption on the Au(111) electrode surface.Crossref | GoogleScholarGoogle Scholar |

[37]  P. Allongue, F. Maroun, H. F. Jurca, N. Tournerie, G. Savidand, R. Cortès, Magnetism of electrodeposited ultrathin layers: challenges and opportunities. Surf. Sci. 2009, 603, 1831.
Magnetism of electrodeposited ultrathin layers: challenges and opportunities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFOltrw%3D&md5=99f4e37504e0d93fb1c8ab2e82f28d36CAS |

[38]  A. Gündel, T. Devolder, C. Chappert, J. E. Schmidt, R. Cortes, P. Allongue, Electrodeposition of Fe/Au(111) ultrathin layers with perpendicular magnetic anisotropy. Physica B 2004, 354, 282.
Electrodeposition of Fe/Au(111) ultrathin layers with perpendicular magnetic anisotropy.Crossref | GoogleScholarGoogle Scholar |

[39]  B. Voigtländer, G. Meyer, N. M. Am, Epitaxial growth of Fe on Au(111): a scanning tunneling microscopy investigation. Surf. Sci. 1991, 255, L529.
Epitaxial growth of Fe on Au(111): a scanning tunneling microscopy investigation.Crossref | GoogleScholarGoogle Scholar |

[40]  E. Bura-Nakić, M. Marguš, I. Milanović, D. Jurašin, I. Ciglenečki, The development of electrochemical methods for determining nanoparticles in the environment. Part II. Chronoamperometric study of FeS in sodium chloride solutions. Environ. Chem. 2013, in press
The development of electrochemical methods for determining nanoparticles in the environment. Part II. Chronoamperometric study of FeS in sodium chloride solutions.Crossref | GoogleScholarGoogle Scholar |

[41]  M. Wolthers, S. J. Van Der Gaast, D. Rickard, The structure of disordered mackinawite. Am. Mineral. 2003, 88, 2007.
| 1:CAS:528:DC%2BD3sXpsV2gs70%3D&md5=b137257fa84bd6a9cdd52a00a2d8eca4CAS |