Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Temperature differentially affects the persistence of polyunsaturated aldehydes in seawater

Ana Bartual A C and María J. Ortega B
+ Author Affiliations
- Author Affiliations

A Departamento Biología, Centro Andaluz de Ciencia y Tecnologías Marinas (CACYTMAR), Universidad de Cádiz, Campus Universitario de Puerto Real, E-11510, Puerto Real, Cádiz, Spain.

B Departamento Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Universitario de Puerto Real, E-11510, Cádiz, Spain.

C Corresponding author. Email: ana.bartual@uca.es

Environmental Chemistry 10(5) 403-408 https://doi.org/10.1071/EN13055
Submitted: 14 March 2013  Accepted: 2 July 2013   Published: 25 October 2013

Environmental context. Diatoms, unicellular algae that live suspended in the water column, can undergo periods of rapid growth, called blooms. When these algal blooms die, organic compounds including polyunsaturated aldehydes are released to the surrounding water with currently unknown ecological effects. Here we demonstrate that temperature differentially affects the persistence of three major polyunsaturated aldehydes produced by diatoms, and we quantify the removal rates from seawater of these compounds.

Abstract. Polyunsaturated aldehydes (PUAs) are volatile compounds commonly released into the environment by different fresh and seawater phytoplankton species. Diatoms are among the main producers of these metabolites in seawater. The release of these metabolites in seawater is known to be wound-activated as a consequence of predation or cell lysis. Hence, the interaction of phytoplankton species that produce PUAs with other marine organisms is being thoroughly investigated. However, the stability of these compounds in seaweater once they are released and their persistence under different environmental conditions have never been quantified. In this work, we reveal an important effect of seawater temperature on the persistence of dissolved 2E,4E/Z-decadienal (DECA), 2E,4E/Z-octadienal (OCTA) and 2E,4E/Z-heptadienal (HEPTA) in seawater at the nanomolar scale. These three aldehydes were more persistent at 10 °C than at either 15 or 20 °C. Half lives of OCTA and HEPTA were reduced from 200 h at 10 °C to 80 h at 15 °C and 60 h at 20 °C. In addition, DECA was consistently more persistent than OCTA and HEPTA at the three temperatures assayed. This dependence of the persistence of dissolved PUAs on seawater temperature could determine a differential effect of equivalent PUA concentrations on the diversity and plankton community’s structure at different water depths, seasons or latitudes.

Additional keywords: diatoms, oxylipins.


References

[1]  P. G. Falkowski, M. E. Katz, A. H. Knoll, A. Quigg, J. A. Raven, O. Scofield, F. R. Taylor, The evolution of modern eukaryotic phytoplankton. Science 2004, 305, 354.
The evolution of modern eukaryotic phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1egt7w%3D&md5=865496684c375044d65ddb39fed1a350CAS | 15256663PubMed |

[2]  T. Wichard, S. Poulet, G. Pohnert, Determination and quantification of α,β,γ,δ-unsaturated aldehydes as pentafluorobenzyl-oxime derivates in diatom cultures and natural phytoplankton populations: application in marine field studies. J. Chromatogr. B 2005, 814, 155.
Determination and quantification of α,β,γ,δ-unsaturated aldehydes as pentafluorobenzyl-oxime derivates in diatom cultures and natural phytoplankton populations: application in marine field studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVyks77O&md5=45008d5ab0bf96dcba77ff01c36601b1CAS |

[3]  A. Fontana, G. d’Ippolito, A. Cutignano, A. Miralto, A. Ianora, G. Romano, G. Cimino, Chemistry of oxylipin pathways in marine diatoms. Pure Appl. Chem. 2007, 79, 481.
Chemistry of oxylipin pathways in marine diatoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1Oit7Y%3D&md5=8dec0ba9a401834f41aed48b0b18b39bCAS |

[4]  G. Pohnert, W. Boland, The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat. Prod. Rep. 2000, 19, 108.

[5]  A. Barofsky, G. Pohnert, Biosynthesis of polyunsaturated short chain aldehydes in the diatom Thalassiosira rotula. Org. Lett. 2007, 9, 1017.
Biosynthesis of polyunsaturated short chain aldehydes in the diatom Thalassiosira rotula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Wjsbo%3D&md5=114f253bbd74ef01e0b96111e3e9ab34CAS | 17298073PubMed |

[6]  G. d’Ippolito, O. Iadicicco, G. Romano, A. Fontana, Detection of short-chain aldehydes in marine organisms: the diatom Thalassiosira rotula. Tetrahedron Lett. 2002, 43, 6137.
Detection of short-chain aldehydes in marine organisms: the diatom Thalassiosira rotula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVKiur0%3D&md5=1a17a6134f3afd1ff6a637c4148e4ae3CAS |

[7]  G. Pohnert, Diatom/copepod interactions in plankton: the indirect chemical defense of unicellular algae. ChemBioChem 2005, 6, 946.
Diatom/copepod interactions in plankton: the indirect chemical defense of unicellular algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsVSqtL4%3D&md5=cec034e2f93fbe540658d75a7e395784CAS | 15883976PubMed |

[8]  T. Wichard, A. Gerecht, M. Boersma, S. Poulet, K. Wiltshire, G. Pohnert, Lipid and fatty acid composition of diatoms revisited: rapid wound-activated change of food quality parameters influences herbivorous copepod reproductive success. ChemBioChem 2007, 8, 1146.
Lipid and fatty acid composition of diatoms revisited: rapid wound-activated change of food quality parameters influences herbivorous copepod reproductive success.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlGhsbY%3D&md5=281b404472789e93a8a5f11d025a9bafCAS | 17541989PubMed |

[9]  C. Vidoudez, G. Pohnert, Growth phase specific release of polyunsaturated aldehydes by the diatom Skeletonema marinoi. J. Plankton Res. 2008, 30, 1305.
Growth phase specific release of polyunsaturated aldehydes by the diatom Skeletonema marinoi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlals7bP&md5=022bf6fa22d6de884e14717aab2123a6CAS |

[10]  G. S. Caldwell, The influence of marine oxylipins from marine diatoms on invertebrate reproduction and development. Mar. Drugs 2009, 7, 367.
The influence of marine oxylipins from marine diatoms on invertebrate reproduction and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWkt77P&md5=23928df0614774842b6ad6fb5c6f0033CAS | 19841721PubMed |

[11]  A. Ianora, S. A. Poulet, A. Miralto, The effects of diatoms on copepod reproduction: a review. Phycologia 2003, 42, 351.
The effects of diatoms on copepod reproduction: a review.Crossref | GoogleScholarGoogle Scholar |

[12]  F. Ribalet, J. A. Berges, A. Ianora, R. Casotti, Growth inhibition of cultured marine phytoplankton by toxic algal-derived polyunsaturated aldehydes. Aquat. Toxicol. 2007, 85, 219.
Growth inhibition of cultured marine phytoplankton by toxic algal-derived polyunsaturated aldehydes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1amsrzP&md5=aa440442d1f4340ba534c4b079febb7fCAS | 17942163PubMed |

[13]  A. Ianora, A. Miralto, Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review. Ecotoxicology 2010, 19, 493.
Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVGjtrs%3D&md5=be3c93fa8941a9a8421bae567ce0021aCAS | 19924531PubMed |

[14]  G. Romano, A. Miralto, A. Ianora, Teratogenic effects of diatom metabolites on sea urchin Paracentrotus lividus embryos. Mar. Drugs 2010, 8, 950.
Teratogenic effects of diatom metabolites on sea urchin Paracentrotus lividus embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlWmsb8%3D&md5=7064e7918c87bbbf5c5d68600f728d83CAS | 20479962PubMed |

[15]  G. Romano, M. Costantini, I. Buttino, A. Ianora, A. Palumbo, Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS ONE 2011, 6, e25980.
Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2lsrrJ&md5=120a64be31804a19c87d8113b35a326bCAS | 22022485PubMed |

[16]  V. Marrone, M. Piscopo, G. Romano, A. Ianora, A. Palumbo, M. Costantini, Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS ONE 2012, 7, e31750.
Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Kqtrk%3D&md5=e7f69ec7d56fe77e24460b16616fcaf3CAS | 22363721PubMed |

[17]  J. Dutz, M. Koski, S. H. Jónasdóttir, Copepod reproduction is unaffected by diatom aldehydes or lipid composition. Limnol. Oceanogr. 2008, 53, 225.
Copepod reproduction is unaffected by diatom aldehydes or lipid composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVGjs7Y%3D&md5=c5de7f851ac491696fc0d41b5712ee2aCAS |

[18]  K. Flynn, X. Irigoien, Aldehyde-induced insidious effects cannot be considered as a diatom defence mechanism against copepods. Mar. Ecol. Prog. Ser. 2009, 377, 79.
Aldehyde-induced insidious effects cannot be considered as a diatom defence mechanism against copepods.Crossref | GoogleScholarGoogle Scholar |

[19]  A. Vardi, F. Formiggini, R. Casotti, A. De Martino, F. Ribalet, A. Miralto, C. Bowler, A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biol. 2006, 4, e60.
A stress surveillance system based on calcium and nitric oxide in marine diatoms.Crossref | GoogleScholarGoogle Scholar | 16475869PubMed |

[20]  C. Paul, A. Reunamo, E. Lindehoff, J. Bergvisk, M. A. Mausz, H. Larsson, H. Richter, S.-Å. Wängberg, P. Leskinen, U. Båmstedt, G. Pohnert, Diatom derived polyunsaturated aldehydes do not structure the planktonic microbial community in a mesocosm study. Mar. Drugs 2012, 10, 775.
Diatom derived polyunsaturated aldehydes do not structure the planktonic microbial community in a mesocosm study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmtlamu7k%3D&md5=1303fa7917a84663b0839826b0bf2b1cCAS | 22690143PubMed |

[21]  C. Balestra, L. Alonso-Sáez, J. M. Gasol, R. Casotti, Group-specific effects on coastal bacterioplankton of polyunsaturated aldehydes produced by diatoms. Aquat. Microb. Ecol. 2011, 63, 123.
Group-specific effects on coastal bacterioplankton of polyunsaturated aldehydes produced by diatoms.Crossref | GoogleScholarGoogle Scholar |

[22]  R. L. Taylor, K. Abrahamsoom, A. Godhe, S. A. Wängberg, Seasonal variability in polyunsaturated aldehyde production potential among strains of Skeletonema marinoi (Bacillariphyceae). J. Phycol. 2009, 45, 46.
Seasonal variability in polyunsaturated aldehyde production potential among strains of Skeletonema marinoi (Bacillariphyceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlGltbY%3D&md5=229f70cb1c2caf89d8c9306b963ebd01CAS |

[23]  F. Ribalet, T. Wichard, G. Pohnert, A. Ianora, A. Miralto, R. Casotti, Age and nutrient limitation enhance polyunsaturated aldehyde production in marine diatoms. Phytochemistry 2007, 68, 2059.
Age and nutrient limitation enhance polyunsaturated aldehyde production in marine diatoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVahsrg%3D&md5=de05a9bf525fad4ad7ef8d3bf83170d5CAS | 17575990PubMed |

[24]  C. Vidoudez, R. Casotti, M. Bastianini, G. Pohnert, Quantification of dissolved and particulate polyunsaturated aldehydes in the Adriatic Sea. Mar. Drugs 2011, 9, 500.
Quantification of dissolved and particulate polyunsaturated aldehydes in the Adriatic Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVektb8%3D&md5=6ef2b48b438634cad92d2ee019c98e51CAS | 21731545PubMed |

[25]  J. H. Brown, J. F. Gillooly, A. P. Allen, V. M. Savage, G. B. West, Towards a metabolic theory of ecology. Ecology 2004, 85, 1771.
Towards a metabolic theory of ecology.Crossref | GoogleScholarGoogle Scholar |

[26]  K. H. Mann, J. R. N. Lazzier, Dynamics of Marine Ecosystem: Biological and Physical Interactions in the Oceans, 2nd edn 1999 (Blackwell Science Inc.: Cambridge, UK).

[27]  J. Aiken, N. Rees, S. Hooker, P. Holligan, A. Bale, D. Robins, G. Moore, R. Harris, D. Pilgrim, The Atlantic meridional transect: overview and synthesis of data. Prog. Oceanogr. 2000, 45, 257.
The Atlantic meridional transect: overview and synthesis of data.Crossref | GoogleScholarGoogle Scholar |

[28]  B. Mouriño-Carballido, R. Graña, A. Fernández, A. Bode, M. Varela, J. F. Domínguez, J. Escánez, D. de Armas, E. Marañón, Importance of N2 fixation vs. nitrate eddy diffusion along a latitudinal transect in the Atlanctic ocean. Limnol. Oceanogr. 2011, 56, 999.
Importance of N2 fixation vs. nitrate eddy diffusion along a latitudinal transect in the Atlanctic ocean.Crossref | GoogleScholarGoogle Scholar |

[29]  F. Peters, C. Marrasé, Effects of turbulence on plankton: an overview of experimental evidence and some theoretical considerations. Mar. Ecol. Prog. Ser. 2000, 205, 291.
Effects of turbulence on plankton: an overview of experimental evidence and some theoretical considerations.Crossref | GoogleScholarGoogle Scholar |

[30]  E. L. Pippen, M. A. Nonaka, Convenient method for synthesizing normal aliphatic 2,4-dienals. J. Org. Chem. 1958, 23, 1580.
Convenient method for synthesizing normal aliphatic 2,4-dienals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXjvFClug%3D%3D&md5=d57274d11c85e9fea679101ec09ac055CAS |

[31]  J. H. Zar, Biostatistical Analysis 1984 (Prentice Hall: Englewood Cliffs, NJ).

[32]  R. Casotti, S. Mazza, C. Brunet, V. Vantrepotte, A. Ianora, A. Miralto, Growth inhibition and toxicity of the diatom aldehyde 2-trans-4-trans-decadienal on Thalassiosira weissflogii. J. Phycol. 2005, 41, 7.
Growth inhibition and toxicity of the diatom aldehyde 2-trans-4-trans-decadienal on Thalassiosira weissflogii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVeqtL0%3D&md5=83e9cc743546672183ba1d16ba22991dCAS |

[33]  S. Adolph, S. A. Poulet, G. Pohnert, Synthesis and biological activity of α,β,γ,δ-unsaturated aldehydes from diatoms. Tetrahedron 2003, 59, 3003.
Synthesis and biological activity of α,β,γ,δ-unsaturated aldehydes from diatoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFCjsLo%3D&md5=1be2708f3297e424f0feea12c78124d4CAS |

[34]  S. Agustí, C. Duarte, Strong seasonality of phytoplankton cell lysis in the NW Mediterranean littoral. Limnol. Oceanogr. 2000, 45, 940.
Strong seasonality of phytoplankton cell lysis in the NW Mediterranean littoral.Crossref | GoogleScholarGoogle Scholar |

[35]  F. Ribalet, L. Intertaglia, P. Lebaron, R. Casotti, Differential effect of three polyunsaturated aldehydes on marine bacterial isolates. Aquat. Toxicol. 2008, 86, 249.
Differential effect of three polyunsaturated aldehydes on marine bacterial isolates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlykt7s%3D&md5=3a49c5a935609d82a45accba79a48f7dCAS | 18093670PubMed |