Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Modelling of secondary organic aerosol formation from isoprene photooxidation chamber studies using different approaches

Haofei Zhang A B C , Harshal M. Parikh A , Jyoti Bapat A , Ying-Hsuan Lin A , Jason D. Surratt A and Richard M. Kamens A
+ Author Affiliations
- Author Affiliations

A Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

B Present address: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

C Corresponding author. Email: hfzhang@lbl.gov; unobaggio@gmail.com

Environmental Chemistry 10(3) 194-209 https://doi.org/10.1071/EN13029
Submitted: 5 February 2013  Accepted: 4 May 2013   Published: 19 June 2013

Environmental context. Fine particulate matter (PM2.5) in the Earth’s atmosphere plays an important role in climate change and human health, in which secondary organic aerosol (SOA) that forms from the photooxidation of volatile organic compounds (VOCs) has a significant contribution. SOA derived from isoprene, the most abundant non-methane VOC emitted into the Earth’s atmosphere, has been widely studied to interpret its formation mechanisms. However, the ability to predict isoprene SOA using current models remains difficult due to the lack of understanding of isoprene chemistry.

Abstract. Secondary organic aerosol (SOA) formation from the photooxidation of isoprene was simulated against smog chamber experiments with varied concentrations of isoprene, nitrogen oxides (NOx = NO + NO2) and ammonium sulfate seed aerosols. A semi-condensed gas-phase isoprene chemical mechanism (ISO-UNC) was coupled with different aerosol-phase modelling frameworks to simulate SOA formation, including: (1) the Odum two-product approach, (2) the 1-D volatility basis-set (VBS) approach and (3) a new condensed kinetic model based upon the gas-particle partitioning theory and reactive uptake processes. The first two approaches are based upon empirical parameterisations from previous studies. The kinetic model uses a gas-phase mechanism to explicitly predict the major intermediate precursors, namely the isoprene-derived epoxides, and hence simulate SOA formation. In general, they all tend to significantly over predict SOA formation when semivolatile concentrations are higher because more semivolatiles are forced to produce SOA in the models to maintain gas-particle equilibrium; yet the data indicate otherwise. Consequently, modified dynamic parameterised models, assuming non-equilibrium partitioning, were incorporated and could improve the model performance. In addition, the condensed kinetic model was expanded by including an uptake limitation representation so that reactive uptake processes slow down or even stop; this assumes reactive uptake reactions saturate seed aerosols. The results from this study suggest that isoprene SOA formation by reactive uptake of gas-phase precursors is likely limited by certain particle-phase features, and at high gas-phase epoxide levels, gas-particle equilibrium is not obtained. The real cause of the limitation needs further investigation; however, the modified kinetic model in this study could tentatively be incorporated in large-scale SOA models given its predictive ability.

Additional keywords: gas-particle partitioning, isoprene-derived epoxides, kinetic models, reactive uptake.


References

[1]  J. L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. D. Allan, H. Coe, N. L. Ng, A. C. Aiken, K. S. Docherty, I. M. Ulbrich, A. P. Grieshop, A. L. Robinson, J. Duplissy, J. D. Smith, K. R. Wilson, V. A. Lanz, C. Hueglin, Y. L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J. M. Tomlinson, D. R. Collins, M. J. Cubison, E. J. Dunlea, J. A. Huffman, T. B. Onasch, M. R. Alfarra, P. I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J. Y. Sun, Y. M. Zhang, K. Szepina, J. R. Kimmel, D. Sueper, J. T. Jayne, S. C. Herndon, A. M. Trimborn, L. R. Williams, E. C. Wood, A. M. Middlebrook, C. E. Kolb, U. Baltensperger, D. R. Worsnop, Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525.
Evolution of organic aerosols in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFensbjE&md5=70447e216a6708480c842ef4b6cac6a3CAS | 20007897PubMed |

[2]  J. H. Kroll, N. M. Donahue, J. L. Jimenez, S. H. Kessler, M. R. Canagaratna, K. R. Wilson, K. E. Altieri, L. R. Mazzoleni, A. S. Wozniak, H. Bluhm, E. R. Mysak, J. D. Smith, C. E. Kolb, D. R. Worsnop, Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat. Chem. 2011, 3, 133.
Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVGhuw%3D%3D&md5=411e8c0cd7c47820db1acdc81ccb0291CAS | 21258386PubMed |

[3]  A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, C. Geron, Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181.
Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2hs7vF&md5=a8ee5544f67ae8808632485303e1cb26CAS |

[4]  D. K. Henze, J. H. Seinfeld, Global secondary organic aerosol from isoprene oxidation. Geophys. Res. Lett. 2006, 33, L09812.
Global secondary organic aerosol from isoprene oxidation.Crossref | GoogleScholarGoogle Scholar |

[5]  A. G. Carlton, C. Wiedinmyer, J. H. Kroll, A review of secondary organic aerosol (SOA) formation from isoprene. Atmos. Chem. Phys. 2009, 9, 4987.
A review of secondary organic aerosol (SOA) formation from isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGlsLnK&md5=66010ff8fd0b603b7eb6568155dd5894CAS |

[6]  F. Paulot, J. D. Crounse, H. G. Kjaergaard, A. Kürten, J. M. St. Clair, J. H. Seinfeld, P. O. Wennberg, Unexpected eposide formation in the gas-phase photooxidation of isoprene. Science 2009, 325, 730.
Unexpected eposide formation in the gas-phase photooxidation of isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptl2gurs%3D&md5=f2962a0866fbdfd48efdc2b4c081b352CAS | 19661425PubMed |

[7]  J. D. Surratt, A. W. H. Chan, N. C. Eddingsaas, M. Chan, C. L. Loza, A. J. Kwan, S. P. Hersey, R. C. Flagan, P. O. Wennberg, J. H. Seinfeld, Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc. Natl. Acad. Sci. USA 2010, 107, 6640.
Reactive intermediates revealed in secondary organic aerosol formation from isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFSjsL0%3D&md5=219fe201c6efbe8bec7657581ad5c79fCAS | 20080572PubMed |

[8]  Y.-H. Lin, H. Zhang, H. O. T. Pye, Z. Zhang, W. J. Marth, S. Park, M. Arashiro, T. Cui, S. H. Budisulistiorini, K. G. Sexton, W. Vizuete, Y. Xie, D. J. Luecken, I. R. Piletic, E. O. Edney, L. J. Bartolotti, A. Gold, J. D. Surratt, Epoxide key to secondary organic aerosol formation from the photooxidation of isoprene in the presence of nitrogen oxides. Proc. Natl. Acad. Sci. USA 2013, 110, 6718.
Epoxide key to secondary organic aerosol formation from the photooxidation of isoprene in the presence of nitrogen oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1Ghs7c%3D&md5=355d7f55cfdc421db2c0de60f8b0fe58CAS | 23553832PubMed |

[9]  Y.-H. Lin, Z. Zhang, K. S. Docherty, H. Zhang, S. H. Budisulistiorini, C. L. Rubitschun, S. L. Shaw, E. M. Knipping, E. S. Edgerton, T. E. Kleindienst, A. Gold, J. D. Surratt, Isoprene epoxydiols as precursors to secondary organic aerosol formation: acid-catalyzed reactive uptake studies with authentic compounds. Environ. Sci. Technol. 2012, 46, 250.
Isoprene epoxydiols as precursors to secondary organic aerosol formation: acid-catalyzed reactive uptake studies with authentic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2nu7zN&md5=f1b7eac6e82099937be2ba4cac3929afCAS | 22103348PubMed |

[10]  M. Claeys, B. Graham, G. Vas, W. Wang, R. Vermeylen, V. Pashynska, J. Cafmeyer, P. Guyon, M. O. Andreae, P. Artaxo, W. Maenhaut, Formation of secondary organic aerosols through photooxidation of isoprene. Science 2004, 303, 1173.
Formation of secondary organic aerosols through photooxidation of isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVWgtb4%3D&md5=0738273575454fede931b49bcec741d0CAS | 14976309PubMed |

[11]  W. Wang, I. Kourtchev, B. Graham, J. Cafmeyer, W. Maenhaut, M. Claeys, Characterization of oxygenated derivatives of isoprene related to 2-methyltetrols in Amazonian aerosols using trimethylsilylation and gas chromatography/ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 1343.
Characterization of oxygenated derivatives of isoprene related to 2-methyltetrols in Amazonian aerosols using trimethylsilylation and gas chromatography/ion trap mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVyqsLk%3D&md5=9aac589eadb3dcb8d40a438076ff2b53CAS | 15856536PubMed |

[12]  Z. Zhang, Y.-H. Lin, H. Zhang, J. D. Surratt, L. M. Ball, A. Gold, Technical note: synthesis of isoprene atmospheric oxidation products: isomeric epoxydiols and the rearrangement products cis- and trans- 3methyl-3,4-dihydroxytetrahydrofuran. Atmos. Chem. Phys. 2012, 12, 8529.
Technical note: synthesis of isoprene atmospheric oxidation products: isomeric epoxydiols and the rearrangement products cis- and trans- 3methyl-3,4-dihydroxytetrahydrofuran.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlOlsbw%3D&md5=02a7f8bde9ed2a72e61f15481f41a8deCAS |

[13]  J. D. Surratt, S. M. Murphy, J. H. Kroll, N. L. Ng, L. Hildebrabdt, A. Sorooshian, R. Szmigielski, R. Vermeylen, W. Maenhaut, M. Claeys, R. C. Flagan, J. H. Seinfeld, Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene. J. Phys. Chem. A 2006, 110, 9665.
Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFGjsbs%3D&md5=d6097fb2ad4c9babf41be5dacbfc2d3aCAS | 16884200PubMed |

[14]  J. D. Surratt, M. Lewandowski, J. H. Offenberg, M. Jaoui, T. E. Kleindienst, E. O. Edney, J. H. Seinfeld, Effect of acidity on secondary organic aerosol formation from isoprene. Environ. Sci. Technol. 2007, 41, 5363.
Effect of acidity on secondary organic aerosol formation from isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFeisrc%3D&md5=cd8084de82802e8be5d31e2c14cb2263CAS | 17822103PubMed |

[15]  K. D. Froyd, S. M. Murphy, D. M. Murphy, J. A. de Gouw, N. C. Eddingsaas, P. O. Wennberg, Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass. Proc. Natl. Acad. Sci. USA 2010, 107, 21360.
Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WisL7I&md5=f783cdf0b4ac37452eae901ae45c899aCAS | 21098310PubMed |

[16]  J. H. Kroll, N. L. Ng, S. M. Murphy, R. C. Flagan, J. H. Seinfeld, Secondary organic aerosol formation from isoprene photooxidation. Environ. Sci. Technol. 2006, 40, 1869.
Secondary organic aerosol formation from isoprene photooxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtl2ju7o%3D&md5=33d45c444b8b04008781663581aafbb1CAS | 16570610PubMed |

[17]  H. Zhang, J. D. Surratt, Y.-H. Lin, J. Bapat, R. M. Kamens, Effect of relative humidity on SOA formation from isoprene/NO photooxidation: enhancement of 2-methylglyceric acid and its corresponding oligoesters under dry conditions. Atmos. Chem. Phys. 2011, 11, 6411.
Effect of relative humidity on SOA formation from isoprene/NO photooxidation: enhancement of 2-methylglyceric acid and its corresponding oligoesters under dry conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yksL3N&md5=68e7a14d73632eb957d63844445537d5CAS |

[18]  H. Zhang, Y.-H. Lin, Z. Zhang, X. Zhang, S. L. Shaw, E. M. Knipping, R. Weber, A. Gold, R. M. Kamens, J. D. Surratt, Secondary organic aerosol formation from methacrolein photooxidation: roles of NOx level, relative humidity, and aerosol acidity. Environ. Chem. 2012, 9, 247.
Secondary organic aerosol formation from methacrolein photooxidation: roles of NOx level, relative humidity, and aerosol acidity.Crossref | GoogleScholarGoogle Scholar |

[19]  A. W. H. Chan, M. N. Chan, J. D. Surratt, P. S. Chhabra, C. L. Loza, J. D. Crounse, L. D. Yee, R. C. Flagan, P. O. Wennberg, J. H. Seinfeld, Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation. Atmos. Chem. Phys. 2010, 10, 7169.
Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSkt7vN&md5=d87705a60be1cb6957226e7e78aee1e8CAS |

[20]  E. O. Edney, T. E. Kleindienst, M. Jaoui, M. Lewandowski, J. H. Offenberg, W. Wang, M. Claeys, Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOx/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States. Atmos. Environ. 2005, 39, 5281.
Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOx/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptVWmur8%3D&md5=e0b56fc32b571d332570e45d8b2402c8CAS |

[21]  J. Liggio, S. M. Li, R. Mclaren, Reactive uptake of glyoxal by particulate matter. J. Geophys. Res. 2005, 110, D10304.
Reactive uptake of glyoxal by particulate matter.Crossref | GoogleScholarGoogle Scholar |

[22]  J. H. Kroll, N. L. Ng, S. M. Murphy, V. Varutbangkul, R. C. Flagan, J. H. Seinfeld, Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds. J. Geophys. Res. 2005, 110, D23207.
Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds.Crossref | GoogleScholarGoogle Scholar |

[23]  R. Volkamer, F. S. Martini, L. T. Molina, D. Salcedo, J. L. Jimenez, M. J. Molina, A missing sink for gas-phase glyoxal in Mexico City: formation of secondary organic aerosol. Geophys. Res. Lett. 2007, 34, L19807.
A missing sink for gas-phase glyoxal in Mexico City: formation of secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[24]  A. G. Carlton, B. J. Turpin, K. E. Altieri, A. Reff, S. P. Seitzinger, H. Lim, B. Ervens, Atmospheric oxalic acid and SOA production from glyoxal: results of aqueous photooxidation experiments. Atmos. Environ. 2007, 41, 7588.
Atmospheric oxalic acid and SOA production from glyoxal: results of aqueous photooxidation experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yis7vJ&md5=3f93353ef136482c3558eac9b47e7e72CAS |

[25]  K. E. Altieri, S. P. Seitzinger, A. G. Carlton, B. J. Turpin, G. C. Klein, A. G. Marshall, Oligomers formed through in-cloud methylglyoxal reactions: chemical composition, properties, and mechanisms investigated by ultra-high resolutio FT-ICR mass spectrometry. Atmos. Environ. 2008, 42, 1476.
Oligomers formed through in-cloud methylglyoxal reactions: chemical composition, properties, and mechanisms investigated by ultra-high resolutio FT-ICR mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFymurs%3D&md5=5b1118b0413741d5171c978fe772e3a3CAS |

[26]  B. Ervens, R. Volkamer, Glyoxal processing by aerosol multiphase chemistry: towards a kinetics modeling framework of secondary organic aerosol formation in aqueous particles. Atmos. Chem. Phys. 2010, 10, 8219.
Glyoxal processing by aerosol multiphase chemistry: towards a kinetics modeling framework of secondary organic aerosol formation in aqueous particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlams7k%3D&md5=1afbc328cc960690297abd736a8f9463CAS |

[27]  R. M. Kamens, H. Zhang, E. H. Chen, Y. Zhou, H. M. Parikh, R. L. Wilson, K. E. Galloway, E. P. Rosen, Secondary organic aerosol formation from toluene in an atmospheric hydrocarbon mixture: water and particle seed effects. Atmos. Environ. 2011, 45, 2324.
Secondary organic aerosol formation from toluene in an atmospheric hydrocarbon mixture: water and particle seed effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVWktbs%3D&md5=70dcfaa60ebb5bdf1b9cec81061bbb5dCAS |

[28]  Y. Zhou, H. Zhang, H. M. Parikh, E. H. Chen, W. Rattanavaraha, E. P. Rosen, W. Wang, R. M. Kamens, Secondary organic aerosol formation from xylenes and mixtures of toluene and xylenes in an atmospheric urban hydrocarbon mixture: water and particle seed effects (II). Atmos. Environ. 2011, 45, 3882.
Secondary organic aerosol formation from xylenes and mixtures of toluene and xylenes in an atmospheric urban hydrocarbon mixture: water and particle seed effects (II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFOgsrw%3D&md5=c9e1cc03e5d99df2c1fe20023a695aebCAS |

[29]  J. R. Odum, T. Hoffmann, F. Bowman, D. Collins, R. C. Flagan, J. H. Seinfeld, Gas/particle partitioning and secondary organic aerosol yields. Environ. Sci. Technol. 1996, 30, 2580.
Gas/particle partitioning and secondary organic aerosol yields.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjslOiurc%3D&md5=13f353ecb6ce96f5a2ec49a13a669298CAS |

[30]  N. M. Donahue, A. L. Robinson, C. O. Stanier, S. N. Pandis, Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Technol. 2006, 40, 2635.
Coupled partitioning, dilution, and chemical aging of semivolatile organics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xitlaltb0%3D&md5=dedb94d7cba023a466e1e5f02fc159dbCAS | 16683603PubMed |

[31]  N. M. Donahue, S. A. Epstein, S. N. Pandis, A. L. Robinson, A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics. Atmos. Chem. Phys. 2011, 11, 3303.
A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFWnt7k%3D&md5=88c8540f7bf39a565336ea6d632aeb42CAS |

[32]  N. M. Donahue, J. H. Kroll, S. N. Pandis, A. L. Robinson, A two-dimensional volatility basis set – Part 2. Diagnostics of organic-aerosol evolution. Atmos. Chem. Phys. 2012, 12, 615.
A two-dimensional volatility basis set – Part 2. Diagnostics of organic-aerosol evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltFShtLg%3D&md5=2d5e8832d506c2d707350bf0b7ecee3dCAS |

[33]  J. F. Pankow, K. C. Barsanti, The carbon number-polarity grid: a means to manage the complexity of the mix of organic compounds when modeling atmospehric organic particulate matter. Atmos. Environ. 2009, 43, 2829.
The carbon number-polarity grid: a means to manage the complexity of the mix of organic compounds when modeling atmospehric organic particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlSisrk%3D&md5=f83d04047301da7aea3b69c8d099e018CAS |

[34]  C. D. Cappa, K. R. Wilson, Multi-generation gas-phase oxidation, equilibrium partitioning, and the formation and evolution of secondary organic aerosol. Atmos. Chem. Phys. 2012, 12, 9505.
Multi-generation gas-phase oxidation, equilibrium partitioning, and the formation and evolution of secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Omsrk%3D&md5=c5fbe4e264979972f73494e0f604ae49CAS |

[35]  M. N. Chan, A. W. H. Chan, P. S. Chhabra, J. D. Surratt, J. H. Seinfeld, Modeling of secondary organic aerosol yields from laboratory chamber data. Atmos. Chem. Phys. 2009, 9, 5669.
Modeling of secondary organic aerosol yields from laboratory chamber data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1eisbvM&md5=208efb3d0d6094a8a16c478b9cf2d6e4CAS |

[36]  N. M. Donahue, K. M. Henry, T. F. Mentel, A. Kiendler-Scharr, C. Spindler, B. Bohn, T. Brauers, H. P. Dorn, H. Fuchs, R. Tillmann, A. Wahner, H. Saathoff, K.-H. Naumann, O. Möhler, T. Leisner, L. Müller, M.-C. Reinnig, T. Hoffmann, K. Salo, M. Hallquist, M. Frosch, M. Bilde, T. Tritscher, P. Barmet, A. P. Praplan, P. F. DeCarlo, J. Dommen, A. S. H. Prévôt, U. Baltensperger, Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. Proc. Natl. Acad. Sci. USA 2012, 109, 13503.
Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVaqurjI&md5=ba600c91d2bd730a3f73dea7f2449ab6CAS | 22869714PubMed |

[37]  H. Zhang, W. Rattanavaraha, Y. Zhou, J. Bapat, E. P. Rosen, R. M. Kamens, A new gas-phase condensed mechanism of isoprene-NOx photooxidation. Atmos. Environ. 2011, 45, 4507.
A new gas-phase condensed mechanism of isoprene-NOx photooxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlCgu7g%3D&md5=018cd235c437fa97240ef4cc601dc3ebCAS |

[38]  H. Zhang, R. M. Kamens, The influence of isoprene peroxy radical isomerization mechanisms on ozone simulation with the presence of NOx. J. Atmos. Chem. 2012, 69, 67.
The influence of isoprene peroxy radical isomerization mechanisms on ozone simulation with the presence of NOx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlCns7c%3D&md5=652c27e7cc74e9cd8fc6867839b656b7CAS |

[39]  S. Lee, M. Jang, R. M. Kamens, SOA formation from the photooxidation of α-pinene in the presence of freshly emitted diesel soot exhaust. Atmos. Environ. 2004, 38, 2597.
SOA formation from the photooxidation of α-pinene in the presence of freshly emitted diesel soot exhaust.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFGgs7c%3D&md5=019ca7516310c6965edfdc3ed371d61eCAS |

[40]  S. Leungsakul, H. E. Jeffries, R. M. Kamens, A kinetic mechanism for predicting secondary aerosol formation from the reactions of d-limonene in the presence of oxides of nitrogen and natural sunlight. Atmos. Environ. 2005, 39, 7063.
A kinetic mechanism for predicting secondary aerosol formation from the reactions of d-limonene in the presence of oxides of nitrogen and natural sunlight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGht7jI&md5=016cc7af52550e7e11085ae0a75e1fbfCAS |

[41]  D. Hu, M. Tolocka, Q. Li, R. M. Kamens, A kinetic mechanism for predicting secondary aerosol formation from toluene oxidation in the presence of NOx and natural sunlight. Atmos. Environ. 2007, 41, 6478.
A kinetic mechanism for predicting secondary aerosol formation from toluene oxidation in the presence of NOx and natural sunlight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsl2jtr8%3D&md5=370737349981ac802faddbd115d3bd18CAS |

[42]  T. E. Lane, N. M. Donahue, S. P. Pandis, Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model. Atmos. Environ. 2008, 42, 7439.
Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOjsLnM&md5=eb84c2b11b80081506b3849b9fd05a9dCAS |

[43]  T. E. Lane, N. M. Donahue, S. P. Pandis, Effect of NOx on secondary organic aerosol concentrations. Environ. Sci. Technol. 2008, 42, 6022.
Effect of NOx on secondary organic aerosol concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVejtr0%3D&md5=286e6f452841d031e751dd3fe41b94adCAS | 18767660PubMed |

[44]  H. M. Parikh, A. G. Carlton, W. Vizuete, R. M. Kamens, Modeling secondary organic aerosol using a dynamic partitioning approach incorporating particle aqueous-phase chemistry. Atmos. Environ. 2011, 45, 1126.
Modeling secondary organic aerosol using a dynamic partitioning approach incorporating particle aqueous-phase chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCgt74%3D&md5=09ea92ec7160fcfa6638173131e471e2CAS |

[45]  H. M. Parikh, A. G. Carlton, Y. Zhou, H. Zhang, R. M. Kamens, W. Vizuete, Modeling secondary organic aerosol from xylene and aromatic mixtures using a dynamic partitioning approach incorporating particle aqueous-phase chemistry (II). Atmos. Environ. 2012, 56, 250.
Modeling secondary organic aerosol from xylene and aromatic mixtures using a dynamic partitioning approach incorporating particle aqueous-phase chemistry (II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFymtrY%3D&md5=6c31797c923c780631d9beca306ba588CAS |

[46]  V. Perraud, E. A. Bruns, M. J. Ezell, S. N. Johnson, Y. Yu, M. L. Alexander, A. Zelenyuk, D. Imre, W. L. Chang, D. Dabdub, J. F. Pankow, B. J. Finlayson-Pitts, Nonequilibrium atmospheric secondary organic aerosol formation and growth. Proc. Natl. Acad. Sci. USA 2012, 109, 2836.
Nonequilibrium atmospheric secondary organic aerosol formation and growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFyisrk%3D&md5=234ff351a64c52676e6d05c792314385CAS | 22308444PubMed |

[47]  B. Koo, A. S. Ansari, S. N. Pandis, Integrated approaches to modeling the organic and inorganic atmospheric aerosol components. Atmos. Environ. 2003, 37, 4757.
Integrated approaches to modeling the organic and inorganic atmospheric aerosol components.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsF2ltbc%3D&md5=74d08139ef1b3bbf234ceead34bd4874CAS |

[48]  A. P. Tsimpidi, V. A. Karydis, M. Zavala, W. Lei, I. Molina, I. M. Ulbrich, J. L. Jimenez, S. N. Pandis, Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area. Atmos. Chem. Phys. 2010, 10, 525.
Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFGjsLg%3D&md5=e0e2ad5ad237bbf2c9b582d08b83326cCAS |

[49]  A. G. Carlton, P. V. Bhave, S. L. Napelenok, E. O. Edney, G. Sarwar, R. W. Pinder, G. A. Pouliot, M. Houyoux, Model representation of secondary organic aerosol in CMAQv4.7. Environ. Sci. Technol. 2010, 44, 8553.
Model representation of secondary organic aerosol in CMAQv4.7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1akt7jI&md5=583cfad527a434f736eb10c294c9b881CAS | 20883028PubMed |

[50]  H. E. Jeffries, M. W. Gary, M. Kessler, K. G. Sexton, Morphecule reaction mechanism, MORPHO, ALLOMORPHIC simulation software. Technical Report CR813107, CR813964 and CR815779 1998, (University of North Carolina: Chapel Hill, NC).

[51]  W. P. L. Carter, Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324.
Development of the SAPRC-07 chemical mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCmtLrO&md5=e847757af2f8a304b56efc31d9729c9fCAS |

[52]  Y. Xie, F. Paulot, W. P. L. Carter, C. G. Nolte, D. J. Luecken, W. T. Hutzell, P. O. Wennberg, R. C. Cohen, R. W. Pinder, Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality. Atmos. Chem. Phys. Discuss. 2012, 12, 27173.
Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality.Crossref | GoogleScholarGoogle Scholar |

[53]  J. F. Pankow, An absorption model of gas-particle partitioning of organic compounds in the atmosphere. Atmos. Environ. 1994, 28, 185.
An absorption model of gas-particle partitioning of organic compounds in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFajs78%3D&md5=c57a2c978502e6cc9c92a9ebca46e43aCAS |

[54]  J. F. Pankow, W. E. Asher, SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds. Atmos. Chem. Phys. 2008, 8, 2773.
SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKktLY%3D&md5=9ba088df5950f24891eefc2f0af23339CAS |

[55]  M. N. Chan, J. D. Surratt, M. Claeys, E. S. Edgerton, R. L. Tanner, S. L. Shaw, M. Zhang, E. M. Knipping, N. C. Eddingsaas, P. O. Wennberg, J. H. Seinfeld, Characterization and quantification of isoprene-derived epoxydiols in ambient aerosol in the southeastern United States. Environ. Sci. Technol. 2010, 44, 4590.
Characterization and quantification of isoprene-derived epoxydiols in ambient aerosol in the southeastern United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFWis7c%3D&md5=6f8562a019332e3660b5c8f9a13b4b13CAS | 20476767PubMed |

[56]  R. M. Kamens, M. Jang, C.-J. Chien, K. Leach, Aerosol formatin from the reaction of α-pinene and ozone using a gas-phase kinetics-aerosol partitioning model. Environ. Sci. Technol. 1999, 33, 1430.
Aerosol formatin from the reaction of α-pinene and ozone using a gas-phase kinetics-aerosol partitioning model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFOmtbg%3D&md5=b14f70b6996a3e3edb4e2921f9049480CAS |

[57]  T. B. Nguyen, P. J. Roach, J. Laskin, A. Laskin, S. A. Nizkorodov, Effect of humidity on the composition and yield of isoprene photooxidation secondary organic aerosol. Atmos. Chem. Phys. 2011, 11, 6931.
Effect of humidity on the composition and yield of isoprene photooxidation secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yks7rM&md5=20356faa1bd1be63b5955030c6da0e5eCAS |

[58]  J. Kroll, J. Hunter, K. Daumit, S. Kessler, A. Carrasquillo, E. Cross, T. Nah, D. Worsnop, K. R. Wilson, Kinetics and products of multiphase aging reactions of organic aerosol, in 31th American Association for Aerosol Research (AAAR) Annual Conference, 8–12 October 2012, Minneapolis, MN 2012, paper 12AC.1 (American Association for Aerosol Research: Mount Laurel, NJ). Available at http://aaarabstracts.com/2012/AbstractBook.pdf [Verified 12 June 2013].

[59]  V. F. McNeill, J. L. Woo, D. D. Kim, A. N. Schwier, N. J. Wannell, A. J. Sumner, J. M. Barakat, Aqueous-phase secondary organic aerosol and organosulfate formation in atmospheric aerosols: a modeling study. Environ. Sci. Technol. 2012, 46, 8075.
Aqueous-phase secondary organic aerosol and organosulfate formation in atmospheric aerosols: a modeling study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVSqtrrI&md5=7ed54dd3e5b4b5b00716ac3de530b695CAS | 22788757PubMed |

[60]  B. Ervens, B. J. Turpin, R. J. Weber, Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos. Chem. Phys. 2011, 11, 11069.
Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFOisLw%3D&md5=181a6701e42d0b51b62842e66c2a2585CAS |

[61]  B. J. Turpin, Y. B. Lim, D. Ortiz-Montalvo, A. Schwier, V. F. McNeill, SOA formation through aqueous chemistry: volatility and yields, 31th American Association for Aerosol Research (AAAR) Annual Conference, 8–12 October 2012, Minneapolis, MN 2012, paper 6AC.4 (American Association for Aerosol Research: Mount Laurel, NJ). Available at http://aaarabstracts.com/2012/AbstractBook.pdf [Verified 12 June 2013].

[62]  R. V. Martin, D. J. Jacob, R. M. Yantosca, M. Chin, P. Ginoux, Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. J. Geophys. Res. 2003, 108, 4097.
Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols.Crossref | GoogleScholarGoogle Scholar |

[63]  T. M. Fu, D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, D. K. Henze, Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res. 2008, 113, D15303.
Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols.Crossref | GoogleScholarGoogle Scholar |

[64]  R. Volkamer, P. J. Ziemann, M. J. Molina, Secondary organic aerosol formation from acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase. Atmos. Chem. Phys. 2009, 9, 1907.
Secondary organic aerosol formation from acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1yisr4%3D&md5=259699adfbd26129d7ae39b83b9a4f4dCAS |

[65]  N. C. Eddingsaas, D. G. VanderVelde, P. O. Wennberg, Kinetics and products of the acid-catalyzed ring-opening of atmospherically relevant butyl epoxy alcohols. J. Phys. Chem. A 2010, 114, 8106.
Kinetics and products of the acid-catalyzed ring-opening of atmospherically relevant butyl epoxy alcohols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFOksbc%3D&md5=26044076a7f9280cd25972035dce6663CAS | 20684583PubMed |

[66]  S. L. Clegg, P. Brimblecombe, A. S. Wexler, A thermodynamic model of the system H+-NH4+-SO42–-NO3–-H2O at tropospheric temperatures. J. Phys. Chem. A 1998, 102, 2155.
A thermodynamic model of the system H+-NH4+-SO42–-NO3-H2O at tropospheric temperatures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlekt7c%3D&md5=333a2382b2a342998df311cb4b47e7edCAS |