Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
REVIEW (Open Access)

Chlorine chemistry in urban atmospheres: a review

C. B. Faxon A B and D. T. Allen A
+ Author Affiliations
- Author Affiliations

A Center for Energy and Environmental Resources, University of Texas, M/C 27100, 10100 Burnet Road, Austin, TX 78758, USA.

B Corresponding author. Email: cfax@utexas.edu




Cameron Faxon is currently a doctoral candidate in Chemical Engineering at the University of Texas at Austin. His research efforts involve the investigation of atmospheric chlorine chemistry with a focus on the impacts on local and regional air quality. Current research projects include the development and implementation of chlorine chemistry mechanisms for use in regional photochemical models as well as environmental chamber studies of heterogeneous processes.



Dr David Allen is the Gertz Regents Professor of Chemical Engineering at the University of Texas at Austin. He also serves as the Director of the Center for Energy and Environmental Resources and was recently appointed as chair of the Environmental Protection Agency's Science Advisory Board (SAB). He is the author of six books and over 170 papers in areas ranging from coal liquefaction and heavy oil chemistry to the chemistry of urban atmospheres.

Environmental Chemistry 10(3) 221-233 https://doi.org/10.1071/EN13026
Submitted: 1 February 2013  Accepted: 18 April 2013   Published: 19 June 2013

Journal Compilation © CSIRO Publishing 2013 Open Access CC BY-NC-ND

Environmental context. Atmospheric chlorine radicals can affect the chemical composition of the atmosphere through numerous reactions with trace species. In urban atmospheres, the reactions of chlorine radicals can lead to effects such as increases in ozone production, thus degrading local and regional air quality. This review summarises the current understanding of atmospheric chlorine chemistry in urban environments and identifies key unresolved issues.

Abstract. Gas phase chlorine radicals (Cl), when present in the atmosphere, react by mechanisms analogous to those of the hydroxyl radical (OH). However, the rates of the Cl-initiated reactions are often much faster than the corresponding OH reactions. The effects of the atmospheric reactions of Cl within urban environments include the oxidation of volatile organic compounds and increases in ozone production rates. Although concentrations of chlorine radicals are typically low compared to other atmospheric radicals, the relatively rapid rates of the reactions associated with this species lead to observable changes in air quality. This is particularly evident in the case of chlorine radical-induced localised increases in ozone concentrations. This review covers five aspects of atmospheric chlorine chemistry: (1) gas phase reactions; (2) heterogeneous and multi-phase reactions; (3) observational evidence of chlorine species in urban atmospheres; (4) regional modelling studies and (5) areas of uncertainty in the current state of knowledge.


References

[1]  M. A. K. Khalil, R. M. Moore, D. B. Harper, J. M. Lobert, D. J. Erickson, V. Koropalov, W. T. Sturges, W. C. Keene, Natural emissions of chlorine-containing gases: reactive chlorine emissions inventory. J. Geophys. Res. 1999, 104, 8333.
Natural emissions of chlorine-containing gases: reactive chlorine emissions inventory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFyltbY%3D&md5=622d92d7854f368fb912418c075faffbCAS |

[2]  H. B. Singh, J. F. Kasting, Chlorine–hydrocarbon photochemistry in the marine troposphere and lower stratosphere. J. Atmos. Chem. 1988, 7, 261.
Chlorine–hydrocarbon photochemistry in the marine troposphere and lower stratosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVSqtg%3D%3D&md5=3651669869ccb231291c6560f4280c74CAS |

[3]  T. E. Graedel, W. C. Keene, Tropospheric budget of reactive chlorine. Global Biogeochem. Cycles 1995, 9, 47.
Tropospheric budget of reactive chlorine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktFGitLs%3D&md5=163cc328aeb9f917d79b1e22b920b659CAS |

[4]  R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry: volume III – gas phase reactions of inorganic halogens. Atmos. Chem. Phys. 2007, 7, 981.
Evaluated kinetic and photochemical data for atmospheric chemistry: volume III – gas phase reactions of inorganic halogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVOhsLw%3D&md5=d6e227ebe1dfb1559d56714ba9c76c11CAS |

[5]  S. P. Sander, R. R. Friedl, J. P. D. Abbatt, J. R. Barker, J. B. Burkholder, D. M. Golden, C. E. Kolb, M. J. Kurylo, G. K. Moortgat, P. H. Wine, R. E. Huie, V. L. Orkin, Chemical kinetics and photochemical data for use in atmospheric studies: evaluation number 17. JPL Publication 10-6 2011 (NASA Jet Propulsion Laboratory: Pasadena, CA) Available at http://jpldataeval.jpl.nasa.gov/pdf/JPL%2010-6%20Final%2015June2011.pdf [Verified 8 May 2013].

[6]  R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, T. J. Wallington, Evaluated kinetic and photochemical data for atmospheric chemistry: volume IV – gas phase reactions of organic halogen species. Atmos. Chem. Phys. 2008, 8, 4141.
Evaluated kinetic and photochemical data for atmospheric chemistry: volume IV – gas phase reactions of organic halogen species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCnurvJ&md5=b68734802e036c33cf2306940459ee00CAS |

[7]  S. Chang, D. T. Allen, Atmospheric chlorine chemistry in southeast texas: impacts on ozone formation and control. Environ. Sci. Technol. 2006, 40, 251.
Atmospheric chlorine chemistry in southeast texas: impacts on ozone formation and control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1GktLrI&md5=280ebbe143bf7d22a62db8c7c8a1f3ddCAS | 16433359PubMed |

[8]  B. J. Finlayson-Pitts, Chlorine atoms as a potential tropospheric oxidant in the marine boundary layer. Res. Chem. Intermed. 1993, 19, 235.
Chlorine atoms as a potential tropospheric oxidant in the marine boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvVOntL4%3D&md5=52adbe7c016109977b9e1bef96c73156CAS |

[9]  S. Chang, E. McDonald-Buller, Y. Kimura, G. Yarwood, J. Neece, M. Russell, P. Tanaka, D. Allen, Sensitivity of urban ozone formation to chlorine emission estimates. Atmos. Environ. 2002, 36, 4991.
Sensitivity of urban ozone formation to chlorine emission estimates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFOrsbc%3D&md5=662c28149f34b023260ea7b91cf5766eCAS |

[10]  R. T. Watson, Rate constants for reactions of ClOx of atmospheric interest. J. Phys. Chem. Ref. Data 1977, 6, 871.
Rate constants for reactions of ClOx of atmospheric interest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXlvVymtLk%3D&md5=69768b2bc436a6207a7a640124420310CAS |

[11]  J. Stutz, B. T. Jobson, A. L. Sumner, B. K. Bailey, W. Vance, Impact of reactive halogen species on the air quality in california coastal areas, final report to the Coordinating Research Council, Inc. and the California Air Resources Board in fulfilment of contracts A-62-1 and A-62-2 and Agreement #05–307 2009 (California Air Resources Board: Sacramento, CA). Available at http://www.arb.ca.gov/research/apr/past/05-307.pdf [Verified 7 May 2013].

[12]  O. W. Wingenter, D. R. Blake, N. J. Blake, B. C. Sive, F. S. Rowland, E. Atlas, F. Flocke, Tropospheric hydroxyl and atomic chlorine concentrations, and mixing timescales determined from hydrocarbon and halocarbon measurements made over the Southern Ocean. J. Geophys. Res. 1999, 104, 21 819.
Tropospheric hydroxyl and atomic chlorine concentrations, and mixing timescales determined from hydrocarbon and halocarbon measurements made over the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsFOnsLg%3D&md5=3ec1eaa5c84dc3f9185c25472f8347b0CAS |

[13]  L. Wang, J. Arey, R. Atkinson, Reactions of chlorine atoms with a series of aromatic hydrocarbons. Environ. Sci. Technol. 2005, 39, 5302.
Reactions of chlorine atoms with a series of aromatic hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslGjtbo%3D&md5=bacd053a89c8a6d4d27cde71de3f5fddCAS | 16082960PubMed |

[14]  L. Nelson, O. Rattigan, R. Neavyn, W. Sidebottom, J. Treacy, O. J. Nielsen, Absolute and relative rate constants for the reactions of hydroxyl radicals and chlorine atoms with a series of aliphatic alchohols and ethers at 298 K. Int. J. Chem. Kinet. 1990, 22, 1111.
Absolute and relative rate constants for the reactions of hydroxyl radicals and chlorine atoms with a series of aliphatic alchohols and ethers at 298 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXotV2gtw%3D%3D&md5=3f6c39617a6701618226caaef0987720CAS |

[15]  S. M. Aschmann, R. Atkinson, Rate constants for the gas-phase reactions of alkanes with Cl atoms at 296 ± 2 K. Int. J. Chem. Kinet. 1995, 27, 613.
Rate constants for the gas-phase reactions of alkanes with Cl atoms at 296 ± 2 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlslGmtbo%3D&md5=e5097de2ac1a09b36b14607de2fa5ae4CAS |

[16]  O. Sokolov, M. D. Hurley, T. J. Wallington, E. W. Kaiser, J. Platz, O. J. Nielsen, F. Berho, M.-T. Rayez, R. Lesclaux, Kinetics and mechanism of the gas-phase reaction of Cl atoms with benzene. J. Phys. Chem. A 1998, 102, 10 671.
Kinetics and mechanism of the gas-phase reaction of Cl atoms with benzene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1ymuro%3D&md5=19482c213d82ce3d97d685188585bb82CAS |

[17]  C. E. Canosa-Mas, H. R. Hutton-Squire, M. D. King, D. J. Stewart, K. C. Thompson, R. P. Wayne, Laboratory kinetic studies of the reactions of Cl atoms with species of biogenic origin: Δ3-carene, isoprene, methacrolein and methyl vinyl ketone. J. Atmos. Chem. 1999, 34, 163.
Laboratory kinetic studies of the reactions of Cl atoms with species of biogenic origin: Δ3-carene, isoprene, methacrolein and methyl vinyl ketone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvV2kurk%3D&md5=77df57092ca4d8503bbffbcd4332224fCAS |

[18]  T. Nordmeyer, W. Wang, M. L. Ragains, B. J. Finlayson-Pitts, C. W. Spicer, R. A. Plastridge, Unique products of the reaction of isoprene with atomic chlorine: potential markers of chlorine atom chemistry. Geophys. Res. Lett. 1997, 24, 1615.
Unique products of the reaction of isoprene with atomic chlorine: potential markers of chlorine atom chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkslOltL4%3D&md5=60b56fcd0338ef920b4f051e068e04d0CAS |

[19]  M. L. Ragains, B. J. Finlayson-Pitts, Kinetics and mechanism of the reaction of Cl atoms with 2-methyl-1,3-butadiene (isoprene) at 298 K. J. Phys. Chem. A 1997, 101, 1509.
Kinetics and mechanism of the reaction of Cl atoms with 2-methyl-1,3-butadiene (isoprene) at 298 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotVCluw%3D%3D&md5=74a538ef98b9f9850a0b844eae1e4413CAS |

[20]  D. D. Riemer, E. C. Apel, Confirming the presence and extent of oxidation by Cl in the Houston, Texas Urban area using specific isoprene oxidation products as tracers, final report to Texas Natural Resource Conservation Commission, Contract #582034743 2002 (Texas Commission on Environmental Quality (TCEQ): Austin, TX). Available at http://tceq.info/assets/public/implementation/air/am/contracts/reports/oth/ConfirmingPresenceandExtentOfOxidationByCI.pdf [Verified 7 May 2013].

[21]  W. Wang, B. J. Finlayson-Pitts, Unique markers of chlorine atom chemistry in coastal urban areas: the reaction with 1,3-butadiene in air at room temperature. J. Geophys. Res. 2001, 106, 4939.
Unique markers of chlorine atom chemistry in coastal urban areas: the reaction with 1,3-butadiene in air at room temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltlSitb4%3D&md5=2c94b11b09506b4138bd750051cca626CAS |

[22]  A. McCulloch, M. L. Aucott, C. M. Benkovits, T. E. Graedel, G. Kleiman, P. M. Midgley, Y.-F. Li, Global emissions of hydrogen chloride and chloromethane from coal combustion, inceneration and industrial activities: reactive chlorine emissions inventory. J. Geophys. Res. 1999, 104, 8391.
Global emissions of hydrogen chloride and chloromethane from coal combustion, inceneration and industrial activities: reactive chlorine emissions inventory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFylur8%3D&md5=f9a04bfaecc200630b012d40194d3704CAS |

[23]  A. R. Ravishankara, Heterogeneous and multiphase chemistry in the troposphere. Science 1997, 276, 1058.
Heterogeneous and multiphase chemistry in the troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjt12ls7c%3D&md5=ed0c61ca55e2ae5650ddb05869dfd903CAS |

[24]  E. M. Knipping, D. Dabdub, Impact of chlorine emissions from sea-salt aerosol on coastal urban ozone. Environ. Sci. Technol. 2003, 37, 275.
Impact of chlorine emissions from sea-salt aerosol on coastal urban ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1yntL4%3D&md5=597b59aa2f47a9808c0a0bade442f818CAS | 12564898PubMed |

[25]  E. Eriksson, The yearly circulation of chloride and sulfur in nature; meteorological, geochemical and pedological implications. Part I. Tellus 1959, II, 375.

[26]  P. Brimblecombe, S. L. Clegg, The solubility and behaviour of acid gases in the marine aerosol. J. Atmos. Chem. 1988, 7, 1.
The solubility and behaviour of acid gases in the marine aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlsFGhtbg%3D&md5=70950034d0d78047b9cafb99334b59d2CAS |

[27]  E. E. Gard, M. J. Kleeman, D. S. Gross, L. S. Hughes, J. O. Allen, B. D. Morrical, D. P. Fergenson, T. Dienes, M. E. Gälli, R. J. Johnson, G. R. Cass, K. A. Prather, Direct observation of heterogeneous chemistry in the atmosphere. Science 1998, 279, 1184.
Direct observation of heterogeneous chemistry in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlSjsbs%3D&md5=d847b6f8e6ac5d1d1f6e6c777eb716b1CAS | 9469803PubMed |

[28]  W. T. Sturges, L. A. Barrie, Chlorine, bromine and iodine in arctic aerosols. Atmos. Environ. 1988, 22, 1179.
Chlorine, bromine and iodine in arctic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvFyjt7s%3D&md5=5a3558fed31d7ed7c3729a5b9a8257d2CAS |

[29]  T. D. Saul, M. P. Tolocka, M. V. Johnston, Reactive uptake of nitric acid onto sodium chloride aerosols across a wide range of relative humidities. J. Phys. Chem. A 2006, 110, 7614.
Reactive uptake of nitric acid onto sodium chloride aerosols across a wide range of relative humidities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFGltro%3D&md5=bc82c2aa84afbacb15c72f7ac0628342CAS | 16774205PubMed |

[30]  D. O. De Haan, B. J. Finlayson-Pitts, Knudsen cell studies of the reaction of gaseous nitric acid with synthetic sea salt at 298 K. J. Phys. Chem. A 1997, 101, 9993.
Knudsen cell studies of the reaction of gaseous nitric acid with synthetic sea salt at 298 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1ahsw%3D%3D&md5=24436d7a783952bc0655e9380cfe64c1CAS |

[31]  W. C. Keene, R. Sander, A. A. P. Pszenny, R. Vogt, P. J. Crutzen, J. N. Galloway, Aerosol pH in the marine boundary layer: a review and model evaluation. J. Aerosol Sci. 1998, 29, 339.
Aerosol pH in the marine boundary layer: a review and model evaluation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis1aqsLk%3D&md5=7fa969c0d12a86bba1405f4c4d91d174CAS |

[32]  D. J. Erickson, C. Seuzaret, W. C. Keene, S. L. Gong, A general circulation model based calculation of HCl and ClNO2 production from sea salt dechlorination: reactive chlorine emissions inventory. J. Geophys. Res. 1999, 104, 8347.
A general circulation model based calculation of HCl and ClNO2 production from sea salt dechlorination: reactive chlorine emissions inventory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFyltbc%3D&md5=64b16b47b2d8d926fa71f91b45c11a9aCAS |

[33]  C. Volpe, M. Wahlen, A. A. P. Pszenny, A. J. Spivack, Chlorine isotopic composition of marine aerosols: implications for the release of reactive chlorine and HCl cycling rates. Geophys. Res. Lett. 1998, 25, 3831.
Chlorine isotopic composition of marine aerosols: implications for the release of reactive chlorine and HCl cycling rates.Crossref | GoogleScholarGoogle Scholar |

[34]  O. W. Wingenter, M. K. Kubo, N. J. Blake, T. W. Smith, D. R. Blake, F. S. Rowland, Hydrocarbon and halocarbon measurements as photochemical and dynamical indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing during Lagrangian flights. J. Geophys. Res. 1996, 101, 4331.
Hydrocarbon and halocarbon measurements as photochemical and dynamical indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing during Lagrangian flights.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhslCrtr8%3D&md5=f4ccf745aeff0cfaf2f0181f1d3f978bCAS |

[35]  J. D. Raff, B. Njegic, W. L. Chang, M. S. Gordon, D. Dabdub, R. B. Gerber, B. J. Finlayson-Pitts, Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen oxides with hydrogen chloride. Proc. Natl. Acad. Sci. USA 2009, 106, 13 647.

[36]  F. E. Livingston, B. J. Finlayson-Pitts, The reaction of gaseous N2O5 with solid NaCl at 298 K: estimated lower limit to the reaction probability and its potential role in tropospheric and stratospheric chemistry. Geophys. Res. Lett. 1991, 18, 17.
The reaction of gaseous N2O5 with solid NaCl at 298 K: estimated lower limit to the reaction probability and its potential role in tropospheric and stratospheric chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhvV2nu7Y%3D&md5=1641d77d3920adbdf6dd440faff3f651CAS |

[37]  B. J. Finlayson-Pitts, M. J. Ezell, J. N. Pitts, Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2. Nature 1989, 337, 241.
Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtl2jsLc%3D&md5=8ec9e67f4eea413754d84a5eab363728CAS |

[38]  B. J. Finlayson-Pitts, The tropospheric chemistry of sea salt: a molecular-level view of the chemistry of NaCl and NaBr. Chem. Rev. 2003, 103, 4801.
The tropospheric chemistry of sea salt: a molecular-level view of the chemistry of NaCl and NaBr.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVSnt78%3D&md5=0dd6e9c13b899591a1d34b120fca571dCAS | 14664634PubMed |

[39]  M. J. Rossi, Atmospheric pollution: the role of heterogeneous chemical reactions. Chimia (Aarau) 1996, 50, 199.
| 1:CAS:528:DyaK28XjsVWmtLs%3D&md5=8562f08d22b58bd6d9de3504c7e6f777CAS |

[40]  W. Behnke, C. George, V. Scheer, C. Zetzsch, Production and decay of ClNO2 from the reaction of gaseous N2O5 with NaCl solution: bulk and aerosol experiments. J. Geophys. Res. 1997, 102, 3795.
Production and decay of ClNO2 from the reaction of gaseous N2O5 with NaCl solution: bulk and aerosol experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFClsLY%3D&md5=e894f0339dbf28b93c5b3d93f7dff00fCAS |

[41]  E. M. Knipping, M. J. Lakin, K. L. Foster, P. Jungwirth, D. J. Tobias, R. B. Gerber, D. Dabdub, B. J. Finlayson-Pitts, Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols. Science 2000, 288, 301.
Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislersr4%3D&md5=2628ca6a82b90f3db9a91ac88c59a687CAS | 10764637PubMed |

[42]  E. M. Knipping, D. Dabdub, Modeling Cl2 formation from aqueous NaCl particles: evidence for interfacial reactions and importance of Cl2 decomposition in alkaline solution. J. Geophys. Res. 2002, 107, 4360.
Modeling Cl2 formation from aqueous NaCl particles: evidence for interfacial reactions and importance of Cl2 decomposition in alkaline solution.Crossref | GoogleScholarGoogle Scholar |

[43]  J. N. Crowley, M. Ammann, R. A. Cox, R. G. Hynes, M. E. Jenkin, A. Mellouki, M. J. Rossi, J. Troe, T. J. Wallington, Evaluated kinetic and photochemical data for atmospheric chemistry: volume V – heterogeneous reactions on solid substrates. Atmos. Chem. Phys. 2010, 10, 9059.
Evaluated kinetic and photochemical data for atmospheric chemistry: volume V – heterogeneous reactions on solid substrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlamsrc%3D&md5=6300f575ed1c8010f4202cd0d61140a3CAS |

[44]  R. C. Sullivan, S. A. Guazzotti, D. A. Sodeman, Y. Tang, G. R. Carmichael, K. A. Prather, Mineral dust is a sink for chlorine in the marine boundary layer. Atmos. Environ. 2007, 41, 7166.
Mineral dust is a sink for chlorine in the marine boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2qsbfN&md5=75466d9348dfbbc9e40c78c7e5ddbbbaCAS |

[45]  W. C. Keene, A. A. P. Pszenny, D. J. Jacob, R. A. Duce, J. N. Galloway, J. J. Schultz-Tokos, H. Sievering, J. F. Boatman, The geochemical cycling of reactive chlorine through the marine troposphere. Global Biogeochem. Cycles 1990, 4, 407.
The geochemical cycling of reactive chlorine through the marine troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksFertrc%3D&md5=6d063dfbf2a1b490c82932374099de5dCAS |

[46]  J. A. Thornton, J. P. Kercher, T. P. Riedel, N. L. Wagner, J. Cozic, J. S. Holloway, W. P. Dubé, G. M. Wolfe, P. K. Quinn, A. M. Middlebrook, B. Alexander, S. S. Brown, A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature 2010, 464, 271.
A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFSmu78%3D&md5=0539b1b73ca9867628bdc24941c62cb8CAS | 20220847PubMed |

[47]  F. Schweitzer, P. Mirabel, C. George, Multiphase chemistry of N2O5, ClNO2, and BrNO2. J. Phys. Chem. A 1998, 102, 3942.
Multiphase chemistry of N2O5, ClNO2, and BrNO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivVarsbo%3D&md5=c1a0696b13cb37f7c51ef237c44a790cCAS |

[48]  M. Aldener, S. S. Brown, H. Stark, E. J. Williams, B. M. Lerner, W. C. Kuster, P. D. Goldan, P. K. Quinn, T. S. Bates, F. C. Fehsenfeld, A. R. Ravishankara, Reactivity and loss mechanisms of NO3 and N2O5 in a polluted marine environment: results from in situ measurements during New England Air Quality Study 2002. J. Geophys. Res. 2006, 111, D23S73.
Reactivity and loss mechanisms of NO3 and N2O5 in a polluted marine environment: results from in situ measurements during New England Air Quality Study 2002.Crossref | GoogleScholarGoogle Scholar |

[49]  J. M. Roberts, H. D. Osthoff, S. S. Brown, A. R. Ravishankara, N2O5 oxidizes chloride to Cl2 in acidic atmospheric aerosol. Science 2008, 321, 1059.
N2O5 oxidizes chloride to Cl2 in acidic atmospheric aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSitrnE&md5=2d2527dc0d8c8a32f9cadd03c830480eCAS | 18599742PubMed |

[50]  S. S. Brown, W. P. Dubé, H. Fuchs, T. B. Ryerson, A. G. Wollny, C. A. Brock, R. Bahreini, A. M. Middlebrook, J. A. Neuman, A. Atlas, J. M. Roberts, H. D. Osthodd, M. Trainer, F. C. Fehsenfeld, A. R. Ravishankara, Reactive uptake coefficients for N2O5 determined from aircraft measurements during the Second Texas Air Quality Study: comparison to current model parameterizations. J. Geophys. Res. 2009, 114, D00F10.
Reactive uptake coefficients for N2O5 determined from aircraft measurements during the Second Texas Air Quality Study: comparison to current model parameterizations.Crossref | GoogleScholarGoogle Scholar |

[51]  J. M. Laux, J. C. Hemminger, B. J. Finlayson-Pitts, X-ray photoelectron spectroscopic studies of the heterogeneous reaction of gaseous nitric acid with sodium chloride: kinetics and contribution to the chemistry of the marine troposphere. Geophys. Res. Lett. 1994, 21, 1623.
X-ray photoelectron spectroscopic studies of the heterogeneous reaction of gaseous nitric acid with sodium chloride: kinetics and contribution to the chemistry of the marine troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVymsrw%3D&md5=f3aa36bf53fef0adf8650ae4f955db4eCAS |

[52]  W. Behnke, C. Zetzsch, Heterogeneous photochemical formation of Cl atoms from NaCl aerosol, NOx and ozone. J. Aerosol Sci. 1990, 21, S229.
Heterogeneous photochemical formation of Cl atoms from NaCl aerosol, NOx and ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktFCnu74%3D&md5=c56be5ef426acdb285c67aaaa19c944fCAS |

[53]  C. Zetzsch, W. Behnke, Heterogeneous photochemical sources of atomic Cl in the troposphere. Ber. Bunsenges. Phys. Chem. 1992, 96, 488.
Heterogeneous photochemical sources of atomic Cl in the troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XisVGjtrY%3D&md5=015cc7166c4775900cb898d644a3f9b8CAS |

[54]  J. M. Roberts, H. D. Osthoff, S. S. Brown, A. R. Ravishankara, D. Coffman, P. Quinn, T. Bates, Laboratory studies of products of N2O5 uptake on Cl– containing substrates. Geophys. Res. Lett. 2009, 36, L20808.
Laboratory studies of products of N2O5 uptake on Cl containing substrates.Crossref | GoogleScholarGoogle Scholar |

[55]  T. H. Bertram, J. A. Thornton, Toward a general parameterization of N2O5 reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride. Atmos. Chem. Phys. 2009, 9, 8351.
Toward a general parameterization of N2O5 reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Gjsbw%3D&md5=bc71da95dc773c1d4edc2c5f0ab93ac2CAS |

[56]  J. A. Thornton, J. P. D. Abbatt, N2O5 reaction on submicron sea salt aerosol: kinetics, products, and the effect of surface active organics. J. Phys. Chem. A 2005, 109, 10 004.
N2O5 reaction on submicron sea salt aerosol: kinetics, products, and the effect of surface active organics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2nurvP&md5=b5f2afb7bef5c5a02914532f0e3c6196CAS |

[57]  A. Frenzel, V. Scheer, R. Sikorski, Ch. George, W. Behnke, C. Zetzsch, Heterogeneous interconversion reactions of BrNO2, ClNO2, Br, and Cl2. J. Phys. Chem. A 1998, 102, 1329.
Heterogeneous interconversion reactions of BrNO2, ClNO2, Br, and Cl2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFOktA%3D%3D&md5=94046ecc310a50412df2df61d921ccdfCAS |

[58]  S. Pechtl, R. von Glasow, Reactive chlorine in the marine boundary layer in the outflow of polluted continental air: a model study. Geophys. Res. Lett. 2007, 34, L11813.
Reactive chlorine in the marine boundary layer in the outflow of polluted continental air: a model study.Crossref | GoogleScholarGoogle Scholar |

[59]  R. Griffin, J. Dibb, B. Lefer, A. Steiner, Surface measurements and one-dimensional modeling related to ozone formation in the suburban Dallas–Fort Worth area, final report for AQRP Project UTA10–000875-RICE-RP24–TO2 2011 (Texas Commission on Environmental Quality (TCEQ): Austin, TX).

[60]  B. R. Appel, Y. Tokiwa, V. Povard, E. L. Kothny, The measurement of atmospheric hydrochloric acid in southern California. Atmos. Environ. 1991, 25A, 525.
| 1:CAS:528:DyaK3MXhsV2it7g%3D&md5=947050052c505733de835eb84991eb7cCAS |

[61]  R. M. Harrison, A. G. Allen, Measurements of atmospheric HNO3, HCl and associated species on a small network in eastern England. Atmos. Environ. 1990, 24A, 369.
| 1:CAS:528:DyaK3cXit1anu7k%3D&md5=3b961e334c5828eb98a922b568557984CAS |

[62]  W. John, S. M. Wall, J. L. Ondo, A new method for nitric acid and nitrate aerosol measurement using the dichotomous sampler. Atmos. Environ. 1988, 22, 1627.
A new method for nitric acid and nitrate aerosol measurement using the dichotomous sampler.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlslGmsrw%3D&md5=a85b1ec65cc723f94dffb9f7c7fdabc7CAS |

[63]  P. Matusca, B. Schwarz, K. Bächmann, Measurements of diurnal concentration variations of gaseous HCl in air in the sub-nanogram range. Atmos. Environ. 1984, 18, 1667.
Measurements of diurnal concentration variations of gaseous HCl in air in the sub-nanogram range.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlsFKltb4%3D&md5=6365cc5760b0f369d3990a9c28d98154CAS |

[64]  W. C. Keene, J. R. Maben, A. A. P. Pszenny, J. N. Galloway, Measurement technique for inorganic chlorine gases in the marine boundary layer. Environ. Sci. Technol. 1993, 27, 866.
Measurement technique for inorganic chlorine gases in the marine boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitFymtbY%3D&md5=914c91908624148c3c3d8a58c9472542CAS |

[65]  A. A. P. Pszenny, W. C. Keene, D. J. Jacob, S. Fan, J. R. Maben, M. P. Zetwo, M. Springer-Young, J. N. Galloway, Evidence of inorganic chlorine gases other than hydrogen chloride in marine surface air. Geophys. Res. Lett. 1993, 20, 699.
Evidence of inorganic chlorine gases other than hydrogen chloride in marine surface air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsFCjsLg%3D&md5=d6416b09511306298125fb906db695eeCAS |

[66]  C. W. Spicer, E. G. Chapman, B. J. Finlayson-Pitts, R. A. Plastridge, J. M. Hubbe, J. D. Fast, C. M. Berkowitz, Unexpectedly high concentrations of molecular chlorine in coastal air. Nature 1998, 394, 353.
Unexpectedly high concentrations of molecular chlorine in coastal air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFKnsb4%3D&md5=2283a7013d688f66ec140f19a3995c22CAS |

[67]  A. A. P. Pszenny, J. Moldanova, W. C. Keene, R. Sander, J. R. Maben, M. Martinez, P. J. Crutzen, D. Perner, R. G. Prinn, Halogen cycling and aerosol pH in the Hawaiian marine boundary layer. Atmos. Chem. Phys. 2004, 4, 147.
Halogen cycling and aerosol pH in the Hawaiian marine boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1yit7Y%3D&md5=cb50ead68c96cc8610dc1578b69c1617CAS |

[68]  B. D. Finley, E. S. Saltzman, Observations of Cl2, Br2, and I2 in coastal marine air. J. Geophys. Res. 2008, 113, D21301.
Observations of Cl2, Br2, and I2 in coastal marine air.Crossref | GoogleScholarGoogle Scholar |

[69]  B. D. Finley, E. S. Saltzman, Measurement of Cl2 in coastal urban air. Geophys. Res. Lett. 2006, 33, L11809.
Measurement of Cl2 in coastal urban air.Crossref | GoogleScholarGoogle Scholar |

[70]  Ø. Hov, The Effect of chlorine on the formation of photochemical oxidants in southern Telemark, Norway. Atmos. Environ. 1985, 19, 471.
The Effect of chlorine on the formation of photochemical oxidants in southern Telemark, Norway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXit1Ghtbs%3D&md5=532451be99e243590eecc401d5d3ba3fCAS |

[71]  P. L. Tanaka, D. D. Riemer, S. Chang, G. Yarwood, E. C. McDonald-Buller, E. C. Apel, J. J. Orlando, P. J. Silva, J. L. Jiminez, M. R. Canagaratna, J. d. Neece, C. B. Mullins, D. T. Allen, Direct evidence for chlorine-enhanced urban ozone formation in Houston, Texas. Atmos. Environ. 2003a, 37, 1393.
Direct evidence for chlorine-enhanced urban ozone formation in Houston, Texas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslGqt7w%3D&md5=4c73484d1b9c29282f551dfb0a42e1a1CAS |

[72]  K. W. Oum, M. J. Lakin, D. O. DeHaan, T. Brauers, B. J. Finlayson-Pitts, Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles. Science 1998, 279, 74.
Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivF2nsg%3D%3D&md5=66a6e34b81b88e95b1298afbc4a49cd0CAS | 9417027PubMed |

[73]  G. A. Impey, P. B. Shepson, D. R. Hastie, L. A. Barrie, Measurement technique for the determination of photolyzable chlorine and bromine in the atmosphere. J. Geophys. Res. 1997a, 102, 15 999.
Measurement technique for the determination of photolyzable chlorine and bromine in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsVKiu74%3D&md5=bb9d95bd28d9df6e257f092c61dbad7bCAS |

[74]  G. A. Impey, P. B. Shepson, D. R. Hastie, L. A. Barrie, K. G. Anlauf, Measurements of photolyzable chlorine and bromine during the Polar Sunrise Experiment 1995. J. Geophys. Res. 1997, 102, 16 005.
Measurements of photolyzable chlorine and bromine during the Polar Sunrise Experiment 1995.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsVKiu78%3D&md5=8fb4693d037d77757273c93457317168CAS |

[75]  J. R. Maben, W. C. Keene, A. A. P. Pszenny, J. N. Galloway, Volatile inorganic Cl in surface air over eastern North America. Geophys. Res. Lett. 1995, 22, 3513.
Volatile inorganic Cl in surface air over eastern North America.Crossref | GoogleScholarGoogle Scholar |

[76]  W. Behnke, C. Zetzsch, Heterogeneous formation of chlorine atoms from various aerosols in the presence of O3 and HCl. J. Aerosol Sci. 1989, 20, 1167.
Heterogeneous formation of chlorine atoms from various aerosols in the presence of O3 and HCl.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhsV2itb0%3D&md5=d73cf090b3f8e6fc0ce4af23c9af8961CAS |

[77]  H. B. Singh, G. L. Gregory, B. Anderson, E. Browell, G. W. Sachse, D. D. Davis, J. Crawford, J. D. Bradshaw, R. Talbot, D. R. Blake, D. Thornton, R. Newell, J. Merrill, Low ozone in the marine boundary layer of the tropical Pacific Ocean: photochemical loss, chlorine atoms, and entrainment. J. Geophys. Res. 1996, 101, 1907.
Low ozone in the marine boundary layer of the tropical Pacific Ocean: photochemical loss, chlorine atoms, and entrainment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1Cktrk%3D&md5=f97733036a1ca987d5ee8bf9a97569dcCAS |

[78]  A. A. P. Pszenny, E. V. Fischer, R. S. Russo, B. C. Sive, R. K. Varner, Estimates of Cl atom concentrations and hydrocarbon kinetic reactivity in surface air at Appledore Island, Maine (USA), during International Consortium for Atmospheric Research on Transport and Transformation/Chemistry of Halogens at the Isles of Shoals. J. Geophys. Res. 2007, 112, D10S13.
Estimates of Cl atom concentrations and hydrocarbon kinetic reactivity in surface air at Appledore Island, Maine (USA), during International Consortium for Atmospheric Research on Transport and Transformation/Chemistry of Halogens at the Isles of Shoals.Crossref | GoogleScholarGoogle Scholar |

[79]  J. Stutz, R. Ackermann, J. D. Fast, L. Barrie, Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah. Geophys. Res. Lett. 2002, 29, 1380.
Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah.Crossref | GoogleScholarGoogle Scholar |

[80]  H. D. Osthoff, J. M. Roberts, A. R. Ravishankara, E. J. Williams, B. M. Lerner, R. Sommariva, T. S. Bates, D. Coffman, P. K. Quinn, J. E. Dibb, H. Stark, J. B. Burkholder, R. K. Talukdar, J. Meagher, F. C. Fehsenfeld, S. S. Brown, High levels of nitryl chloride in the polluted subtropical marine boundary layer. Nat. Geosci. 2008, 1, 324.
High levels of nitryl chloride in the polluted subtropical marine boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlCksLo%3D&md5=68935ffb235b2829f04652ca621debe1CAS |

[81]  D. D. Parrish, D. T. Allen, T. S. Bates, M. Estes, F. C. Fehsenfeld, G. Feingold, R. Ferrare, R. M. Hardesty, J. F. Meagher, J. W. Nielsen-Gammon, R. B. Pierce, T. B. Ryerson, J. H. Seinfeld, E. J. Williams, Overview of the Second Texas Air Quality Study (TexAQS II) and the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). J. Geophys. Res. 2009, D7, D00F13.
Overview of the Second Texas Air Quality Study (TexAQS II) and the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS).Crossref | GoogleScholarGoogle Scholar |

[82]  T. P. Riedel, T. H. Bertram, T. A. Crisp, E. J. Williams, B. M. Lerner, A. Vlasenko, S.-M. Li, J. Gilman, J. de Gouw, D. M. Bon, N. L. Wagner, S. S. Brown, J. A. Thornton, Nitryl chloride and molecular chlorine in the coastal marine boundary layer. Environ. Sci. Technol. 2012, 46, 10 463.
Nitryl chloride and molecular chlorine in the coastal marine boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVWqu7o%3D&md5=8b3656c692b277e29fc098e858953e4fCAS |

[83]  L. H. Mielke, A. Furgeson, H. D. Osthoff, Observation of ClNO2 in mid-continental urban environment. Environ. Sci. Technol. 2011, 45, 8889.
Observation of ClNO2 in mid-continental urban environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Wks7bJ&md5=81ea4771e855a02f941d2211355ba6f1CAS | 21877701PubMed |

[84]  J. P. Kercher, T. P. Riedel, J. A. Thornton, Chlorine activation by N2O5: simultaneous, in situ detection of ClNO2 and N2O5 by chemical ionization mass spectrometry. Atmos. Meas. Tech. 2009, 2, 193.
Chlorine activation by N2O5: simultaneous, in situ detection of ClNO2 and N2O5 by chemical ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFSqtL7E&md5=2ed20783f639a05c82db87e5519024f4CAS |

[85]  B. T. Jobson, H. Niki, Y. Yokouchi, J. Bottenheim, F. Hopper, R. Leaitch, Measurements of C2–C6 hydrocarbons during the Polar Sunrise 1992 experiment: evidence for Cl atom and Br atom chemistry. J. Geophys. Res. 1994, 99, 25 355.
Measurements of C2–C6 hydrocarbons during the Polar Sunrise 1992 experiment: evidence for Cl atom and Br atom chemistry.Crossref | GoogleScholarGoogle Scholar |

[86]  G. Yarwood, S. Rao, M. Yocke, G. Z. Whitten, Final report: updates to the carbon bond chemical mechanism: CB05, Report Prepared for US EPA RT-04-00675 2005 (Environ: Novato, CA).

[87]  G. Z. Whitten, H. Hogo, J. P. Killus, The carbon-bond mechanism: a condensed kinetic mechanism for photochemical smog. Environ. Sci. Technol. 1980, 14, 690.
The carbon-bond mechanism: a condensed kinetic mechanism for photochemical smog.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlvFWhs7w%3D&md5=4108570e07d510ea002366162cb4773dCAS | 22296476PubMed |

[88]  P. L. Tanaka, D. T. Allen, E. C. McDonald-Buller, S. Chang, Y. Kimura, C. B. Mullins, G. Yarwood, J. D. Neece, Development of a chlorine mechanism for use in the Carbon Bond IV Chemistry Model. J. Geophys. Res. 2003b, 108, 4145.
Development of a chlorine mechanism for use in the Carbon Bond IV Chemistry Model.Crossref | GoogleScholarGoogle Scholar |

[89]  W. P. L. Carter, Development of the SAPRC-07 chemical mechanism and updated ozone reactivity scales, report to the California Air Resources Board Contracts 03-318, 06-408 and 07-730 2010 (California Air Resources Board: Sacramento, CA).

[90]  G. Heo, Y. Kimura, E. McDonald-Buller, W. P. L. Carter, G. Yarwood, D. T. Allen, Modeling alkene chemistry using condensed mechanisms for conditions relevant to southeast Texas, USA. Atmos. Environ. 2010, 44, 5365.
Modeling alkene chemistry using condensed mechanisms for conditions relevant to southeast Texas, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCmtLrK&md5=7082e2d2f600d666a49253840359e7d9CAS |

[91]  H. Simon, Y. Kimura, G. McGaughey, D. T. Allen, S. S. Brown, H. D. Osthoff, J. M. Roberts, D. Byun, D. Lee, Modeling the impact of ClNO2 on ozone formation in the Houston area. J. Geophys. Res. 2009, 114, D00F03.
Modeling the impact of ClNO2 on ozone formation in the Houston area.Crossref | GoogleScholarGoogle Scholar |

[92]  H. Simon, Y. Kimura, G. McGaughey, D. T. Allen, S. S. Brown, D. Coffman, J. Dibb, H. D. Osthoff, P. Quinn, J. M. Roberts, G. Yarwood, S. Kemball-Cook, D. Byun, D. Lee, Modeling heterogeneous ClNO2 formation, chloride availability, and chlorine cycling in southeast Texas. Atmos. Environ. 2010, 44, 5476.
Modeling heterogeneous ClNO2 formation, chloride availability, and chlorine cycling in southeast Texas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCmtLvE&md5=44ccd5f36133336382f90c7c17ac2ecbCAS |

[93]  M. Faraji, Y. Kimura, E. McDonald-Buller, D. Allen, Comparison of the carbon bond and SAPRC photochemical mechanisms under conditions relevant to southeast Texas. Atmos. Environ. 2008, 42, 5821.
Comparison of the carbon bond and SAPRC photochemical mechanisms under conditions relevant to southeast Texas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVaisb8%3D&md5=9506e63973dace5ba7a4c6cba79901ebCAS |

[94]  G. Sarwar, H. Simon, P. Bhave, G. Yarwood, Examining the impact of heterogeneous nitryl chloride production on air quality across the United States. Atmos. Chem. Phys. 2012, 12, 6455.
Examining the impact of heterogeneous nitryl chloride production on air quality across the United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSnu7jM&md5=57bd6090ff3dd74c171402ed10bb78f7CAS |

[95]  D. J. Jacob, Heterogeneous chemistry and tropospheric ozone. Atmos. Environ. 2000, 34, 2131.
Heterogeneous chemistry and tropospheric ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlaju7s%3D&md5=bdb6a46400d00ecf9847ef2ed43c6612CAS |

[96]  L. Wang, T. Thompson, E. C. McDonald-Buller, A. Webb, D. T. Allen, Photochemical modeling of emissions trading of highly reactive volatile organic compounds in Houston, Texas. 1. Reactivity based trading and potential for ozone hot spot formation. Environ. Sci. Technol. 2007a, 41, 2095.
Photochemical modeling of emissions trading of highly reactive volatile organic compounds in Houston, Texas. 1. Reactivity based trading and potential for ozone hot spot formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFWnsrY%3D&md5=48b8cde6ee569924f919b35f4eca9ca0CAS | 17438748PubMed |

[97]  L. Wang, T. Thompson, E. C. McDonald-Buller, D. T. Allen, Photochemical modeling of emissions trading of highly reactive volatile organic compounds in Houston, Texas. 2. Incorporation of chlorine emissions. Environ. Sci. Technol. 2007b, 41, 2103.
Photochemical modeling of emissions trading of highly reactive volatile organic compounds in Houston, Texas. 2. Incorporation of chlorine emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFWnsrc%3D&md5=e194821670b7fe1814c2fd2b51afb07aCAS | 17438749PubMed |

[98]  G. Sarwar, P. B. Bhave, Modeling the effect of chlorine emissions on ozone levels over the eastern United States. J. Appl. Meteorol. Climatol. 2007, 46, 1009.
Modeling the effect of chlorine emissions on ozone levels over the eastern United States.Crossref | GoogleScholarGoogle Scholar |

[99]  A. Cohan, W. Chang, M. Carreras-Sosphedra, D. Dabdub, Influence of sea-salt activated chlorine and surface-mediated renoxification on the weekend effect in the South Coast Air Basin of California. Atmos. Environ. 2008, 42, 3115.
Influence of sea-salt activated chlorine and surface-mediated renoxification on the weekend effect in the South Coast Air Basin of California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVemsL8%3D&md5=b1c5c21e2c0d52317245f934fcf70624CAS |

[100]  W. Behnke, H.-U. Krüger, V. Scheer, C. Zetzsch, Formation of atomic Cl from sea spray via photolysis of nitryl chloride: determination of the sticking coefficient of N2O5 on NaCl aerosol. J. Aerosol Sci. 1991, 22, S609.
Formation of atomic Cl from sea spray via photolysis of nitryl chloride: determination of the sticking coefficient of N2O5 on NaCl aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksFCqsrY%3D&md5=bc4da99ba96f0efbb6b9e6bfc498ccf6CAS |

[101]  Ch. George, J. L. Ponche, Ph. Mirabel, W. Behnke, V. Scheer, C. Zetzsch, Study of the uptake of N2O5 by water and NaCl solutions. J. Phys. Chem. 1994, 98, 8780.
Study of the uptake of N2O5 by water and NaCl solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFCiurk%3D&md5=e8475b3d5cccf292045d1c8684c81cdfCAS |

[102]  J. H. Hu, J. P. D. Abbatt, Reaction probabilities for N2O5 hydrolysis on sulfuric acid and ammonium sulfate aerosols at room temperature. J. Phys. Chem. A 1997, 101, 871.
Reaction probabilities for N2O5 hydrolysis on sulfuric acid and ammonium sulfate aerosols at room temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVChsQ%3D%3D&md5=b9f6f6b419bdf3ffb7f6af70649ef90aCAS |

[103]  M. Schütze, H. Herrmann, Determination of phase transfer parameters for the uptake of HNO3, N2O5 and O3 on single aqueous drops. Phys. Chem. Chem. Phys. 2002, 4, 60.
Determination of phase transfer parameters for the uptake of HNO3, N2O5 and O3 on single aqueous drops.Crossref | GoogleScholarGoogle Scholar |

[104]  S. Chang, P. Tanaka, E. McDonald-Buller, D. T. Allen, Emission inventory for atomic chlorine precursors in Southeast Texas, report on contract 9880077600-18 between The University of Texas and the Texas Natural Resource Conservation Commission 2001 (Texas Commission on Environmental Quality (TCEQ): Austin, TX). Available at http://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/oth/EmissioninventoryForAtomicChlorinePrecursors.pdf [Verified 7 May 2013].

[105]  A. McCulloch, M. L. Aucott, C. M. Benkovits, T. E. Graedel, G. Kleiman, P. M. Midgley, Y.-F. Li, Global emissions of hydrogen chloride and chloromethane from coal combustion, incineration and industrial activities: reactive chlorine emissions inventory. J. Geophys. Res. 1999, 104, 8391.
Global emissions of hydrogen chloride and chloromethane from coal combustion, incineration and industrial activities: reactive chlorine emissions inventory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFylur8%3D&md5=f9a04bfaecc200630b012d40194d3704CAS |

[106]  J. M. Lobert, W. C. Keene, J. A. Logan, R. Yevich, Global chlorine emissions from biomass burning: reactive chlorine emissions inventory. J. Geophys. Res. 1999, 104, 8373.
Global chlorine emissions from biomass burning: reactive chlorine emissions inventory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFylur4%3D&md5=c0072a4f80f2d54b4aac0186e7bfdfd7CAS |

[107]  W. C. Keene, M. A. K. Khalil, D. J. Erickson, A. McCulloch, T. E. Graedel, J. M. Lobert, M. L. Aucott, S. L. Gong, D. B. Harper, G. Kleiman, P. Midgley, R. M. Moore, C. Seuzaret, W. T. Sturges, C. M. Benkovitz, V. Koropalov, L. A. Barrie, Y. F. Li, Composite global emissions of reactive chlorine from anthropogenic and natural sources: reactive chlorine emissions inventory. J. Geophys. Res. 1999, 104, 8429.
Composite global emissions of reactive chlorine from anthropogenic and natural sources: reactive chlorine emissions inventory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFyluro%3D&md5=98258f9c4fdf89c6e8c599d444d7fd11CAS |

[108]  A. Reff, P. V. Bhave, H. Simon, T. G. Pace, G. A. Pouliot, J. D. Mobley, M. Houyoux, Emissions inventory of PM2.5 trace elements across the united states. Environ. Sci. Technol. 2009, 43, 5790.
Emissions inventory of PM2.5 trace elements across the united states.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFKnt74%3D&md5=5d244ef557a4c2e0bb66977ba8f37146CAS | 19731678PubMed |

[109]  B. J. Finlayson-Pitts, C. J. Keoshian, B. Buehler, A. A. Ezell, Kinetics of reaction of chlorine atoms with some biogenic organics. Int. J. Chem. Kinet. 1999, 31, 491.
Kinetics of reaction of chlorine atoms with some biogenic organics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFWqtbk%3D&md5=af09709f446b6494968b8d1465ff0d30CAS |

[110]  J. Stutz, M. J. Ezell, A. A. Ezell, B. J. Finlayson-Pitts, Rate constants and kinetic isotope effects in the reactions of atomic chlorine with n-butane and simple alkenes at room temperature. J. Phys. Chem. A 1998, 102, 8510.
Rate constants and kinetic isotope effects in the reactions of atomic chlorine with n-butane and simple alkenes at room temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFeqtrg%3D&md5=6e22e06400926de1763ad1a554959092CAS |

[111]  K. J. Gill, R. A. Hites, Rate constants for the gas-phase reactions of the hydroxyl radical with isoprene, α- and β-pinene, and limonene as a function of temperature. J. Phys. Chem. A 2002, 106, 2538.
Rate constants for the gas-phase reactions of the hydroxyl radical with isoprene, α- and β-pinene, and limonene as a function of temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1ert70%3D&md5=ece4ab9fb24a79612795d6bd0d5ecc91CAS |

[112]  R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry: supplement III. Int. J. Chem. Kinet. 1989, 21, 115.
Evaluated kinetic and photochemical data for atmospheric chemistry: supplement III.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhvFKksrw%3D&md5=7a3d78b09b5d7e06f036cee76a0d7b98CAS |

[113]  S. M. Aschmann, J. Arey, R. Atkinson, Atmospheric chemistry of three C10 alkanes. J. Phys. Chem. A 2001, 105, 7598.
Atmospheric chemistry of three C10 alkanes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFKnu70%3D&md5=fc92695532e3c7369f685105e189c942CAS |

[114]  W. P. L. Carter, D. Luo, I. L. Malkina, J. A. Pierce, Environmental chamber studies of atmospheric reactivities of volatile organic compounds. Effects of varying ROG surrogate and NOx, final report to California Air Resources Board, Contract A032-096 1995 (California Air Resources Board: Sacramento, CA). Available at http://www.cert.ucr.edu/~carter/pubs/explrept.pdf [Verified 7 May 2013].

[115]  J. A. Manion, R. E. Huie, R. D. Levin, D. R. Burgess Jr, V. L. Orkin, W. Tsang, W. S. McGivern, J. W. Hudgens, V. D. Knyazev, D. B. Atkinson, E. Chai, A. M. Tereza, C.-Y. Lin, T. C. Allison, W. G. Mallard, F. Westley, J. T. Herron, R. F. Hampson, D. H. Frizzell, NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.4.3, Data version 2008.12 2013 (National Institute of Standards and Technology: Gaithersburg, MD). Available at http://kinetics.nist.gov/ [Verified 7 May 2013].