Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Secondary organic aerosol formation from the oxidation of a series of sesquiterpenes: α-cedrene, β-caryophyllene, α-humulene and α-farnesene with O3, OH and NO3 radicals

Mohammed Jaoui A C , Tadeusz E. Kleindienst B , Kenneth S. Docherty A , Michael Lewandowski B and John H. Offenberg B
+ Author Affiliations
- Author Affiliations

A Alion Science and Technology, PO Box 12313, Research Triangle Park, NC 27709, USA.

B US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC 27711, USA.

C Corresponding author. Email: jaoui.mohammed@epa.gov

Environmental Chemistry 10(3) 178-193 https://doi.org/10.1071/EN13025
Submitted: 1 February 2012  Accepted: 28 May 2013   Published: 28 June 2013

Journal Compilation © CSIRO Publishing 2013 Open Access CC BY-NC-ND

Environmental context. Sesquiterpenes, chemicals emitted by terrestrial vegetation, are oxidised in the ambient atmosphere leading to the formation of secondary organic aerosol. Although secondary organic aerosol can have significant effects on air quality from local to global scales, considerable gaps remain in our understanding of their various sources and formation mechanisms. We report studies on the oxidation of sesquiterpenes aimed at improving aerosol parameterisation for these reactions for incorporation into future air quality models.

Abstract. A series of sesquiterpenes (SQT) were individually oxidised under a range of conditions, including irradiation in the presence of NOx, reactions with O3 or reactions with NO3 radicals. Experiments were conducted in either static mode to observe temporal evolution of reactants and products or in dynamic mode to ensure adequate collection of aerosol at reasonably low reactant concentrations. Although some measurements of gas-phase products have been made, the focus of this work has been particle phase analysis. To identify individual products, filter samples were extracted, derivatised and analysed using gas chromatography mass spectrometry techniques. The results indicate that secondary organic aerosol (SOA) is readily formed from SQT oxidation. The high reactivity of these systems and generally high conversion into SOA products gives rise to high SOA levels. SOA yields (ratio of SOA formed to hydrocarbon reacted) averaged 0.53 for ozonolysis, 0.55 for photooxidation and 1.19 for NO3 reactions. In select experiments, SOA was also analysed for the organic matter/organic carbon (OM/OC) ratio, and the effective enthalpy of vaporisation (ΔHvapeff). The OM/OC ranged from 1.8 for ozonolysis and photooxidation reactions to 1.6 for NO3 reactions, similar to that from SOA generated in monoterpene systems. ΔHvapeff was measured for β-caryophyllene–NOx, β-caryophyllene–O3, β-caryophyllene–NO3, α-humulene–NOx and α-farnesene–NOx systems and found to be 43.9, 41.1, 44.9, 48.2 and 27.7 kJ mol–1. Aerosol yields and products identified in this study are generally in good agreement with results from several studies. A detailed examination of the chamber aerosol for the presence of chemical tracer compounds was undertaken. Only β-caryophyllinic acid, observed mainly under β-caryophyllene photooxidation and ozonolysis experiments, was detected in ambient aerosol. Chemical analysis yielded compounds having oxygen and nitrogen moieties present, which indicates continued evolution of the particles over time and presents high dependence on the SQT–oxidant system studied. This study suggests that SOA from laboratory ozonolysis experiments may adequately represent ambient aerosol in areas with SQT emissions.

Additional keywords: biogenic SOA, fine particulate matter, night-time chemistry, ozonolysis, PM2.5, SOA.


References

[1]  A. Guenther, C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, P. Zimmerman, A global model of natural volatile organic compound emissions. J. Geophys. Res. 1995, 100, 8873.
A global model of natural volatile organic compound emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvFKrsb0%3D&md5=f8ec60b8d0c502e237993887de9c1a69CAS |

[2]  T. R. Duhl, D. Helmig, A. Guenther, Sesquiterpene emissions from vegetation: a review. Biogeosciences 2008, 5, 761.
Sesquiterpene emissions from vegetation: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCqsLrK&md5=27487476e2ca021c6fe360d1c76055dfCAS |

[3]  F. W. Went, Blue hazes in the atmosphere. Nature 1960, 187, 641.
Blue hazes in the atmosphere.Crossref | GoogleScholarGoogle Scholar |

[4]  M. Kanakidou, J. H. Seinfeld, S. N. Pandis, I. Barnes, F. J. Dentener, M. C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C. J. Nielsen, E. Swietlicki, J. P. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G. K. Moortgat, R. Winterhalter, C. E. L. Myhre, K. Tsigaridis, E. Vignati, E. G. Stephanou, J. Wilson, Organic aerosol and global climate modeling: a review. Atmos. Chem. Phys. 2005, 5, 1053.
Organic aerosol and global climate modeling: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyrtbw%3D&md5=9658c4771c5ada0b0161d82d71086b1fCAS |

[5]  M. Hallquist, J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, J. F. Hamilton, H. Herrmann, T. Hoffmann, Y. Iinuma, M. Jang, M. E. Jenkin, J. L. Jimenez, A. Kiendler-Scharr, W. Maenhaut, G. McFiggans, Th. F. Mentel, A. Monod, A. S. H. Prevot, J. H. Seinfeld, J. D. Surratt, R. Szmigielski, J. Wildt, The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155.
The formation, properties and impact of secondary organic aerosol: current and emerging issues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhs77M&md5=92e7020caa93e2e140c369b93a625364CAS |

[6]  J. F. Sisler, W. C. Malm, The relative importance of soluble aerosols to spatial and seasonal trends of impaired visibility in the United States. Atmos. Environ. 1994, 28, 851.
The relative importance of soluble aerosols to spatial and seasonal trends of impaired visibility in the United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtVKhsL8%3D&md5=f2f1f98d9f9d1213c6975e21c4665b5eCAS |

[7]  R. J. Charlson, S. E. Chwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hoffman, Climate forcing by anthropogenic aerosols. Science 1992, 255, 423.
Climate forcing by anthropogenic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtFSntbk%3D&md5=8c11d15ca6762712cc223408fd8741aeCAS | 17842894PubMed |

[8]  C. A. Pope, M. Ezzati, D. W. Dockery, Fine particulate air pollution and life expectancy in the United States. New Engl. J. Med. 2009, 360, 376.
Fine particulate air pollution and life expectancy in the United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSltr8%3D&md5=8b7bb10b8ce70ab3950b8eda8a7ef5bdCAS | 19164188PubMed |

[9]  I. Faloona, D. Tan, W. Brune, J. Hurst, D. Barket, T. L. Couch, P. Shepson, E. Apel, D. Riemer, T. Thornberry, M. A. Carroll, S. Sillman, G. J. Keeler, J. Sagady, D. Hooper, K. Paterson, Nighttime observations of anomalously high levels of hydroxyl radicals above a deciduous forest canopy. J. Geophys. Res. 2001, 106, 24315.
Nighttime observations of anomalously high levels of hydroxyl radicals above a deciduous forest canopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslWhtLo%3D&md5=0e78df41ee8763ec4a917c39f2e41249CAS |

[10]  R. A. Holzinger, K. T. Lee, U. Paw, A. H. Goldstein, Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds. Atmos. Chem. Phys. 2005, 5, 67.
Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyqsbw%3D&md5=60696723abd34581464222423a7a2002CAS |

[11]  A. H. Goldstein, I. E. Galbally, Known and unexplored organic constituents in the Earth’s atmosphere. Environ. Sci. Technol. 2007, 41, 1514.
Known and unexplored organic constituents in the Earth’s atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Cnuro%3D&md5=bb559320fbd5146133774d732702004cCAS | 17396635PubMed |

[12]  P. Di Carlo, W. H. Brune, M. Martinez, H. Harder, R. Lesher, X. Ren, T. Thornberry, M. A. Carroll, V. Young, P. B. Shepson, D. Riemer, E. Apel, C. Campbell, Missing OH reactivity in a forest: evidence for unknown reactive biogenic VOCs. Science 2004, 304, 722.
Missing OH reactivity in a forest: evidence for unknown reactive biogenic VOCs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsV2gt7c%3D&md5=f2365626c80deda0d0930b47dccd11bbCAS | 15118159PubMed |

[13]  A. H. Goldstein, M. McKay, M. R. Kurpius, G. W. Schade, A. Lee, R. Holzinger, R. A. Rasmussen, Forest thinning experiment confirms ozone deposition to forest canopy is dominated by reaction with biogenic VOCs. Geophys. Res. Lett. 2004, 31, L22106.
Forest thinning experiment confirms ozone deposition to forest canopy is dominated by reaction with biogenic VOCs.Crossref | GoogleScholarGoogle Scholar |

[14]  D. K. Farmer, R. C. Cohen, Observations of HNO3, ΣAN, ΣPN and NO2 fluxes: evidence for rapid HOx chemistry within a pine forest canopy. Atmos. Chem. Phys. 2008, 8, 3899.
Observations of HNO3, ΣAN, ΣPN and NO2 fluxes: evidence for rapid HOx chemistry within a pine forest canopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFeiu7fO&md5=8775939cfa4ca4a9570028d738ecabe6CAS |

[15]  K. Jardine, A. Yañez Serrano, A. Arneth, L. Abrell, A. Jardine, J. van Haren, P. Artaxo, L. V. Rizzo, F. Y. Ishida, T. Karl, J. Kesselmeier, S. Saleska, T. Huxman, Within-canopy sesquiterpene ozonolysis in Amazonia. J. Geophys. Res. 2011, 116, D19301.
Within-canopy sesquiterpene ozonolysis in Amazonia.Crossref | GoogleScholarGoogle Scholar |

[16]  P. Ciccioli, E. Brancaleoni, M. Frattoni, V. Di Palo, R. Valentini, G. Tirone, G. Seufert, N. Bertin, U. Hansen, O. Csiky, R. Lenz, M. Sharma, Emission of reactive terpene compounds from orange orchards and their removal by within-canopy processes. J. Geophys. Res. 1999, 104, 8077.
Emission of reactive terpene compounds from orange orchards and their removal by within-canopy processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFyltLw%3D&md5=1f6ed0a493cd0e8605cec5cfde60c4e7CAS |

[17]  C. E. Vickers, J. Gershenzon, M. T. Lerdau, F. Loreto, A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat. Chem. Biol. 2009, 5, 283.
A unified mechanism of action for volatile isoprenoids in plant abiotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks12ksbg%3D&md5=6f5ed8a9361ac5513ed4ba104342ca5aCAS | 19377454PubMed |

[18]  T. Sakulyanontvittaya, T. Duhl, C. Wiedinmyer, D. Helmig, S. Matsunaga, M. Potosnak, J. Milford, A. Guenther, Monoterpene and sesquiterpene emission estimates for the United States. Environ. Sci. Technol. 2008, 42, 1623.
Monoterpene and sesquiterpene emission estimates for the United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslyitg%3D%3D&md5=e8dd68288bf6c57def8b3a4b9508bb69CAS | 18441812PubMed |

[19]  R. T. Griffin, D. R. Cocker, R. C. Flagan, J. H. Seinfeld, Organic aerosol formation from the oxidation of biogenic hydrocarbons. J. Geophys. Res. 1999, 104, 3555.
Organic aerosol formation from the oxidation of biogenic hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFWjs7Y%3D&md5=fd5c8df4f3d60bc615965ab6e935be6aCAS |

[20]  Y. Shu, R. Atkinson, Rate constants for the gas-phase reactions of O3 with a series of terpenes and OH radical formation for the O3 reactions with sesquiterpenes at 296 K. Int. J. Chem. Kinet. 1994, 26, 1193.
Rate constants for the gas-phase reactions of O3 with a series of terpenes and OH radical formation for the O3 reactions with sesquiterpenes at 296 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitF2ksb8%3D&md5=f249a1c859d3a57e8ca2a7954b8a14b6CAS |

[21]  Y. Shu, R. Atkinson, Atmospheric lifetimes and fates of a series of sesquiterpenes. J. Geophys. Res. 1995, 100, 7275.
Atmospheric lifetimes and fates of a series of sesquiterpenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmt1Chsbc%3D&md5=82602c194881102fb1e2cb5a75916dc7CAS |

[22]  R. Atkinson, J. Arey, Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605.
Atmospheric degradation of volatile organic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVChtrs%3D&md5=fef3fb034520ef1e5691a65da2ee5a53CAS | 14664626PubMed |

[23]  M. Jaoui, S. Leungsakul, R. M. Kamens, Gas and particle products distribution from the reaction of β-caryophyllene with ozone. J. Atmos. Chem. 2003, 45, 261.
Gas and particle products distribution from the reaction of β-caryophyllene with ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Cnt7w%3D&md5=46e37340a873c17fc0a6f6328a8697a4CAS |

[24]  A. Lee, A. H. Goldstein, M. D. Keywood, S. Gao, V. Varutbangkul, R. Bahreini, N. L. Ng, R. C. Flagan, J. H. Seinfeld, Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes. J. Geophys. Res. 2006, 111, D07302.
Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes.Crossref | GoogleScholarGoogle Scholar |

[25]  A. Lee, A. H. Goldstein, J. H. Kroll, N. L. Ng, V. Varutbangkul, R. C. Flagan, J. H. Seinfeld, Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. J. Geophys. Res. 2006, 111, D17305.
Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes.Crossref | GoogleScholarGoogle Scholar |

[26]  N. L. Ng, P. S. Chhabra, A. W. H. Chan, J. D. Surratt, J. H. Kroll, A. J. Kwan, D. C. McCabe, P. O. Wennberg, A. Sorooshian, S. M. Murphy, N. F. Dalleska, R. C. Flagan, J. H. Seinfeld, Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmos. Chem. Phys. 2007, 7, 5159.
Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOnsrvL&md5=517b2a279527b665dd8010097481df58CAS |

[27]  T. Hoffmann, J. R. Odum, F. Bowman, D. Collins, D. Klockow, R. C. Flagan, J. H. Seinfeld, Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J. Atmos. Chem. 1997, 26, 189.
Formation of organic aerosols from the oxidation of biogenic hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvVKmsLg%3D&md5=2b59106c295ae7dfd6ad53fd29e85a85CAS |

[28]  B. Kanawati, F. Herrmann, S. Joniec, R. Winterhalter, G. K. Moortgat, Mass spectrometric characterization of β-caryophyllene ozonolysis products in the aerosol studied using an electrospray triple quadrupole and time-of-flight analyzer hybrid system and density functional theory. Rapid Commun. Mass Spectrom. 2008, 22, 165.
Mass spectrometric characterization of β-caryophyllene ozonolysis products in the aerosol studied using an electrospray triple quadrupole and time-of-flight analyzer hybrid system and density functional theory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVSlsrk%3D&md5=3b397f514807a7fcf8b7b891a9da7b12CAS | 18069749PubMed |

[29]  R. Winterhalter, F. Herrmann, B. Kanawati, T. L. Nguyen, J. Peeters, L. Vereecken, G. K. Moortgat, The gas-phase ozonolysis of β-caryophyllene (C15H24). Part I: an experimental study. Phys. Chem. Chem. Phys. 2009, 11, 4152.
The gas-phase ozonolysis of β-caryophyllene (C15H24). Part I: an experimental study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFCitrY%3D&md5=29fda3a5a8ab1b04c209f3ff4ae79e44CAS | 19458818PubMed |

[30]  Y. J. Li, Q. Chen, M. I. Guzman, C. K. Chan, S. M. Martin, Second-generation products contribute substantially to the particle-phase organic material produced by β-caryophyllene ozonolysis. Atmos. Chem. Phys. 2011, 11, 121.
Second-generation products contribute substantially to the particle-phase organic material produced by β-caryophyllene ozonolysis.Crossref | GoogleScholarGoogle Scholar |

[31]  T. L. Nguyen, R. Winterhalter, G. K. Moortgat, B. Kanawati, J. Peeters, L. Vereecken, The gas-phase ozonolysis of b-caryophyllene (C15H24). Part II: a theoretical study. Phys. Chem. Chem. Phys. 2009, 11, 4173.
The gas-phase ozonolysis of b-caryophyllene (C15H24). Part II: a theoretical study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFCit74%3D&md5=2a41ebf9e9358f63b31b4d492e48da13CAS | 19458819PubMed |

[32]  M. N. Chan, J. D. Surratt, A. W. H. Chan, K. Schilling, J. H. Offenberg, M. Lewandowski, E. O. Edney, T. E. Kleindienst, M. Jaoui, E. S. Edgerton, R. L. Tanner, S. L. Shaw, M. Zheng, E. M. Knipping, J. H. Seinfeld, Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene. Atmos. Chem. Phys. 2011, 11, 1735.
Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFyltbw%3D&md5=86c66711febc6e5e61c7eabe23c18dd6CAS |

[33]  M. Jaoui, M. Lewandowski, T. E. Kleindienst, J. H. Offenberg, E. O. Edney, β-Caryophyllinic acid: an atmospheric tracer for β-caryophyllene secondary organic aerosol. Geophys. Res. Lett. 2007, 34, L05816.
β-Caryophyllinic acid: an atmospheric tracer for β-caryophyllene secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[34]  M. R. Alfarra, J. F. Hamilton, K. P. Wyche, N. Good, M. W. Ward, T. Carr, M. H. Barley, P. S. Monks, M. E. Jenkin, G. B. McFiggans, The effect of photochemical ageing and initial precursor concentration on the composition and hygroscopic properties of β-caryophyllene secondary organic aerosol. Atmos. Chem. Phys. 2012, 12, 6417.
The effect of photochemical ageing and initial precursor concentration on the composition and hygroscopic properties of β-caryophyllene secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSnu7vE&md5=a01968422654289f49db878261a3de04CAS |

[35]  Q. Chen, Y. J. Li, A. McKinney, M. Kuwata, S. T. Martin, Particle mass yield from β-caryophyllene ozonolysis. Atmos. Chem. Phys. 2012, 12, 3165.
Particle mass yield from β-caryophyllene ozonolysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptFelsrY%3D&md5=772217567da5b69ecb74245f9fabdcc5CAS |

[36]  T. E. Kleindienst, M. Jaoui, M. Lewandowski, J. H. Offenberg, C. W. Lewis, P. V. Bhave, E. O. Edney, Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location. Atmos. Environ. 2007, 41, 8288.
Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWntrjJ&md5=0dcfb3871c51e5d4a661c177c693e912CAS |

[37]  J. Parshintsev, J. Nurmi, I. Kilpelainen, K. Hartonen, M. Kulmala, M. L. Riekkola, Preparation of β-caryophyllene oxidation products and their determination in ambient aerosol samples. Anal. Bioanal. Chem. 2008, 390, 913.
Preparation of β-caryophyllene oxidation products and their determination in ambient aerosol samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVyjuw%3D%3D&md5=b572baf857cd9f02766958bfc4ab56d0CAS | 18080117PubMed |

[38]  M. E. Jenkin, K. P. Wyche, C. J. Evans, T. Carr, P. S. Monks, M. R. Alfarra, M. H. Barley, G. B. McFiggans, J. C. Young, A. R. Rickard, Development and chamber evaluation of the MCM v3.2 degradation scheme for β-caryophyllene. Atmos. Chem. Phys. 2012, 12, 5275.
Development and chamber evaluation of the MCM v3.2 degradation scheme for β-caryophyllene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlaltb3P&md5=14a7e01bdb19eccee4e25a0cc9a10e60CAS |

[39]  M. Jaoui, R. M. Kamens, Gas and particulate products distribution from the photooxidation of α-humulene in the presence of NOx, natural atmospheric air and sunlight. J. Atmos. Chem. 2003, 46, 29.
Gas and particulate products distribution from the photooxidation of α-humulene in the presence of NOx, natural atmospheric air and sunlight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1Smu7o%3D&md5=c646ec5c4d04ab88dfc0100c5db8ba66CAS |

[40]  M. Jaoui, K. G. Sexton, R. M. Kamens, Reaction of α-cedrene with ozone: mechanism, gas and particulate products distribution. Atmos. Environ. 2004, 38, 2709.
Reaction of α-cedrene with ozone: mechanism, gas and particulate products distribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFCksro%3D&md5=0433ee930a1582288b92a8efb8d4e16dCAS |

[41]  I. Kourtchev, I. Bejan, J. R. Sodeau, J. C. Wenger, Gas-phase reaction of (E)-β-farnesene with ozone: rate coefficient and carbonyl products. Atmos. Environ. 2009, 43, 3182.
Gas-phase reaction of (E)-β-farnesene with ozone: rate coefficient and carbonyl products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFGjurs%3D&md5=0242013b649127470a79ce51416c8773CAS |

[42]  I. Kourtchev, I. Bejan, J. R. Sodeau, J. C. Wenger, Gas phase reaction of OH radicals with (E)-β-farnesene at 296 ± 2 K: rate coefficient and carbonyl products. Atmos. Environ. 2012, 46, 338.
Gas phase reaction of OH radicals with (E)-β-farnesene at 296 ± 2 K: rate coefficient and carbonyl products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGks7vK&md5=36c2aed13d385016e0645eef4621e4e1CAS |

[43]  A. G. Carlton, B. J. Turpin, K. E. Altieri, S. Seitzinger, A. Reff, H. J. Lim, B. Ervens, Atmospheric oxalic acid and SOA production from glyoxal: results of aqueous photooxidation experiments. Atmos. Environ. 2007, 41, 7588.
Atmospheric oxalic acid and SOA production from glyoxal: results of aqueous photooxidation experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yis7vJ&md5=3f93353ef136482c3558eac9b47e7e72CAS |

[44]  J. Liggio, S. M. Li, R. McLaren, Reactive uptake of glyoxal by particulate matter. J. Geophys. Res. 2005, 110, D10304.
Reactive uptake of glyoxal by particulate matter.Crossref | GoogleScholarGoogle Scholar |

[45]  R. Volkamer, F. San Martini, L. T. Molina, D. Salcedo, J. L. Jimenez, M. Molina, A missing sink for gas-phase glyoxal in Mexico City: formation of secondary organic aerosol. Geophys. Res. Lett. 2007, 34, L19807.
A missing sink for gas-phase glyoxal in Mexico City: formation of secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[46]  J. H. Kroll, N. L. Ng, S. M. Murphy, V. Varutbangkul, R. C. Flagan, J. H. Seinfeld, Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds. J. Geophys. Res. 2005, 110, D23207.
Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds.Crossref | GoogleScholarGoogle Scholar |

[47]  W. E. Wilson, E. L. Merryman, A. Levy, H. R. Taliaferro, Aerosol formation in photochemical smog. I. Effect of stirring. J. Air Pollut. Control Assoc. 1971, 21, 128.
Aerosol formation in photochemical smog. I. Effect of stirring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXhtlSjtb8%3D&md5=5c2932948df39b2b9ead77abefe04b02CAS |

[48]  T. E. Kleindienst, E. O. Edney, M. Lewandowski, J. H. Offenberg, M. Jaoui, Secondary organic carbon and aerosol yields from the irradiations of isoprene and α-pinene in the presence of NOx and SO2. Environ. Sci. Technol. 2006, 40, 3807.
Secondary organic carbon and aerosol yields from the irradiations of isoprene and α-pinene in the presence of NOx and SO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksValt78%3D&md5=89cae7b34a25aad1077e0599f33f7cf0CAS | 16830546PubMed |

[49]  D. W. Fahey, C. S. Eubank, G. Hubler, F. C. Fehsenfeld, A calibrated source of N2O5. Atmos. Environ. 1985, 19, 1883.
A calibrated source of N2O5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XjvV2isw%3D%3D&md5=fde763192715e45b51344027cb1fd210CAS |

[50]  A. Fried, B. E. Henry, J. G. Calvert, M. Mozurkewich, The reaction probability of N2O5 with sulfuric-acid aerosols at stratospheric temperatures and compositions. J. Geophys. Res. 1994, 99, 3517.
The reaction probability of N2O5 with sulfuric-acid aerosols at stratospheric temperatures and compositions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkvFSgtr4%3D&md5=53941118e9b9ea3ac92600d4867f49e1CAS |

[51]  M. Hallquist, D. J. Stewart, S. K. Stephenson, R. A. Cox, Hydrolysis of N2O5 on sub-micron sulfate aerosols. Phys. Chem. Chem. Phys. 2003, 5, 3453.
Hydrolysis of N2O5 on sub-micron sulfate aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFakt7Y%3D&md5=094f5d3f555546ec8ce38e8c8cc84f8aCAS |

[52]  C. L. Badger, P. T. Griffiths, I. George, J. P. D. Abbatt, R. A. Cox, Reactive uptake of N2O5 by aerosol particles containing mixtures of humic acid and ammonium sulfate. J. Phys. Chem. A 2006, 110, 6986.
Reactive uptake of N2O5 by aerosol particles containing mixtures of humic acid and ammonium sulfate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFegsbY%3D&md5=f82dec10a12710dda679b0c571faeca6CAS | 16722713PubMed |

[53]  J. Blunden, V. P. Aneja, W. A. Lonneman, Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina. Atmos. Environ. 2005, 39, 6707.
Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFarsLnL&md5=a7372335b0597f747359b2ab64d815d5CAS |

[54]  J. Offenberg, M. Lewandowski, E. O. Edney, T. E. Kleindienst, M. Jaoui, Investigation of a systematic offset in the measurement of organic carbon with a Semicontinuous analyzer. J. Air Waste Manage. Assoc. 2007, 57, 596.
Investigation of a systematic offset in the measurement of organic carbon with a Semicontinuous analyzer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVWhu7k%3D&md5=7d3cebbaab16105b1586b9df3ed254beCAS |

[55]  J. H. Offenberg, T. E. Kleindienst, M. Jaoui, M. Lewandowski, E. O. Edney, Thermal properties of secondary organic aerosol. Geophys. Res. Lett. 2006, 33, L03816.
Thermal properties of secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[56]  K. S. Docherty, M. Jaoui, E. Corse, J. L. Jimenez, J. H. Offenberg, M. Lewandowski, T. E. Kleindienst, Collection efficiency of the aerosol mass spectrometer for chamber-generated secondary organic aerosols. Aerosp. Sci. Technol. 2013, 47, 294.
Collection efficiency of the aerosol mass spectrometer for chamber-generated secondary organic aerosols.Crossref | GoogleScholarGoogle Scholar |

[57]  P. F. DeCarlo, J. R. Kimmel, A. Trimborn, M. J. Northway, J. T. Jayne, A. C. Aiken, Foeld-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal. Chem. 2006, 78, 8281.
Foeld-deployable, high-resolution, time-of-flight aerosol mass spectrometer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFynurzI&md5=6fb0ab8e0c2142eb156596bc104fb972CAS | 17165817PubMed |

[58]  M. Jaoui, T. E. Kleindienst, M. Lewandowski, E. O. Edney, Identification and quantification of aerosol polar oxygenated compounds bearing carboxylic and/or hydroxyl groups. 1. Method development. Anal. Chem. 2004, 76, 4765.
Identification and quantification of aerosol polar oxygenated compounds bearing carboxylic and/or hydroxyl groups. 1. Method development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsFSgs70%3D&md5=5c7b8debb635466f5507fe08d96f1442CAS | 15307788PubMed |

[59]  M. Jaoui, R. M. Kamens, Mass balance of gaseous and particulate products analysis from α-pinene/NOx/air in the presence of NOx. J. Geophys. Res. 2001, 106, 12 541.
Mass balance of gaseous and particulate products analysis from α-pinene/NOx/air in the presence of NOx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltlegtbY%3D&md5=613a9305c186802c2e46ac289dfa4b9dCAS |

[60]  M. Jaoui, T. E. Kleindienst, J. H. Offenberg, M. Lewandowski, W. A. Lonneman, SOA formation from the atmospheric oxidation of 2-methyl-3-buten-2-ol and its implications for PM2.5. Atmos. Chem. Phys. 2012, 12, 2173.
SOA formation from the atmospheric oxidation of 2-methyl-3-buten-2-ol and its implications for PM2.5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1eisL4%3D&md5=3c38de1f3e163fb8d6d455184750628eCAS |

[61]  E. O. Edney, T. E. Kleindienst, T. S. Conver, C. D. McIver, E. W. Corse, W. S. Weathers, Polar organic oxygenates in PM2.5 at a southeastern site in the United States. Atmos. Environ. 2003, 37, 3947.
Polar organic oxygenates in PM2.5 at a southeastern site in the United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFejsbY%3D&md5=6fa88f8d7a200b592881a27d9e698df6CAS |

[62]  J. H. Offenberg, M. Lewandowski, E. O. Edney, T. E. Kleindienst, M. Jaoui, Influence of aerosol acidity on the formation of secondary organic aerosol from biogenic precursor hydrocarbons. Environ. Sci. Technol. 2009, 43, 7742.
Influence of aerosol acidity on the formation of secondary organic aerosol from biogenic precursor hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGiu7rI&md5=3ee15418e8d662ad33c434b7f742e506CAS | 19921888PubMed |

[63]  A. Calogirou, D. Kotzias, A. Kettrup, Products analysis of the gas phase reaction of β-caryophyllene with ozone. Atmos. Environ. 1997, 31, 283.
Products analysis of the gas phase reaction of β-caryophyllene with ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntVykt7g%3D&md5=37c6de16744011dcbc7fc6a329395e9eCAS |