Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Arsenic binding to organic and inorganic sulfur species during microbial sulfate reduction: a sediment flow-through reactor experiment

Raoul-Marie Couture A B C F , Dirk Wallschläger D , Jérôme Rose E and Philippe Van Cappellen A B
+ Author Affiliations
- Author Affiliations

A Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, USA.

B University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.

C Norwegian Institute for Water Research, Gaustadalléen 21, N-0349 Oslo, Norway.

D Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 7B8, Canada.

E CNRS-Aix Marseille University UMR 7330 CEREGE, Europôle de l’Arbois, 13545 Aix-en-Provence, France.

F Corresponding author. Email: rmc@niva.no

Environmental Chemistry 10(4) 285-294 https://doi.org/10.1071/EN13010
Submitted: 18 January 2013  Accepted: 26 May 2013   Published: 5 August 2013

Environmental context. The use of water contaminated with arsenic for drinking and irrigation is linked to water and food borne diseases throughout the world. Although reducing conditions in soils and sediments are generally viewed as enhancing arsenic mobility in subsurface environments, we show they can actually promote As sequestration in the presence of reduced sulfur species and labile organic matter. We propose that sulfurisation of organic matter and subsequent binding of As to thiol groups may offer an innovative pathway for As remediation.

Abstract. Flow-through reactors (FTRs) were used to assess the mobility of arsenic under sulfate reducing conditions in natural, undisturbed lake sediments. The sediment slices in the FTRs were supplied continuously with inflow solutions containing sulfate and soluble AsIII or AsV and, after 3 weeks, also lactate. The experiment ran for a total of 8 weeks. The dissolved iron concentration, pH, redox potential (Eh), as well as aqueous As and sulfur speciation were monitored in the outflow solutions. In FTRs containing surface sediment enriched in labile organic matter (OM), microbial sulfate reduction led to an accumulation of organically bound S, as evidenced by X-ray absorption spectroscopy. For these FTRs, the inflowing dissolved As concentration of 20 μM was lowered by two orders of magnitude, producing outflow concentrations of 0.2 μM monothioarsenate and 0.1 μM arsenite. In FTRs containing sediment collected at greater depth, sulfide and zero-valent S precipitated as pyrite and elemental S, while steady-state outflow arsenite concentrations remained near 5 μM. The observations thus suggest that As sequestration is enhanced when sediment OM buffers the free sulfide and zero-valent S concentrations. An updated conceptual model for the fate of As in the anoxic As–C–S–Fe system is presented based on the results of this study.


References

[1]  D. Polya, L. Charlet, Environmental science: rising arsenic risk? Nat. Geosci. 2009, 2, 383.
Environmental science: rising arsenic risk?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Ortbc%3D&md5=10103852831db6e3cd0d7786f2dafb8bCAS |

[2]  M. L. Polizzotto, B. D. Kocar, S. G. Benner, M. Sampson, S. Fendorf, Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 2008, 454, 505.
Near-surface wetland sediments as a source of arsenic release to ground water in Asia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovV2mtLs%3D&md5=1c8d2a7c780e18daac4364b85a296ec0CAS | 18650922PubMed |

[3]  C. F. Harvey, C. H. Swartz, A. B. M. Badruzzaman, N. Keon-Blute, W. Yu, M. A. Ali, J. Jay, R. Beckie, V. Niedan, D. Brabander, P. M. Oates, K. N. Ashfaque, S. Islam, H. F. Hemond, M. F. Ahmed, Arsenic mobility and groundwater extraction in Bangladesh. Science 2002, 298, 1602.
Arsenic mobility and groundwater extraction in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xosl2ktb0%3D&md5=55f23a5e3f8700c429b43c7c5d6a028fCAS | 12446905PubMed |

[4]  K. S. Savage, T. N. Tingle, P. A. O’Day, G. A. Waychunas, D. K. Bird, Arsenic speciation in pyrite and secondary weathering phases, mother lode gold district, tuolumne county, california. Appl. Geochem. 2000, 15, 1219.
Arsenic speciation in pyrite and secondary weathering phases, mother lode gold district, tuolumne county, california.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFaksrs%3D&md5=4648221cfa722372af30305c4520c178CAS |

[5]  M. Wolthers, L. Charlet, C. H. van Der Weijden, P. R. van der Linde, D. Rickard, Arsenic mobility in the ambient sulfidic environment: Sorption of arsenic(V) and arsenic(III) onto disordered mackinawite. Geochim. Cosmochim. Acta 2005, 69, 3483.
Arsenic mobility in the ambient sulfidic environment: Sorption of arsenic(V) and arsenic(III) onto disordered mackinawite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlKltbw%3D&md5=3542dbe8b308dd650bac989224d2c483CAS |

[6]  B. C. Bostick, S. Fendorf, Arsenite sorption on troilite (FeS) and pyrite (FeS2). Geochim. Cosmochim. Acta 2003, 67, 909.
Arsenite sorption on troilite (FeS) and pyrite (FeS2).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1WgtLw%3D&md5=e86bb8a437785f288fd9158773bb48fdCAS |

[7]  T. J. Gallegos, S. P. Hyun, K. F. Hayes, Spectroscopic investigation of the uptake of arsenite from solution by synthetic mackinawite. Environ. Sci. Technol. 2007, 41, 7781.
Spectroscopic investigation of the uptake of arsenite from solution by synthetic mackinawite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOrs7zJ&md5=696b1ea8c382826d1c7481f1db2fabaaCAS | 18075088PubMed |

[8]  J. A. Saunders, M. K. Lee, M. Shamsudduha, P. Dhakal, A. Uddin, M. T. Chowdury, K. M. Ahmed, Geochemistry and mineralogy of arsenic in (natural) anaerobic groundwaters. Appl. Geochem. 2008, 23, 3205.
Geochemistry and mineralogy of arsenic in (natural) anaerobic groundwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWkurrN&md5=b5209398b3a77e9a1a023d0807e27a8aCAS |

[9]  C. F. Harvey, K. N. Ashfaque, W. Yu, A. B. M. Badruzzaman, M. A. Ali, P. M. Oates, H. A. Michael, R. B. Neumann, R. Beckie, S. Islam, M. F. Ahmed, Groundwater dynamics and arsenic contamination in bangladesh. Chem. Geol. 2006, 228, 112.
Groundwater dynamics and arsenic contamination in bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFehs7o%3D&md5=6d3e210de096c871f093e674bd8c0dcdCAS |

[10]  R. T. Wilkin, R. G. Ford, Arsenic solid-phase partitioning in reducing sediments of a contaminated wetland. Chem. Geol. 2006, 228, 156.
Arsenic solid-phase partitioning in reducing sediments of a contaminated wetland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFehs7g%3D&md5=fc0f81c8199f356e1c59111799269e52CAS |

[11]  P. A. O’Day, D. Vlassopoulos, R. Root, N. Rivera, The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl. Acad. Sci. USA 2004, 101, 13703.
The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVygtrk%3D&md5=7e1010b7a4d91da4126ee9a3033ca595CAS | 15356340PubMed |

[12]  B. C. Bostick, C. Chen, S. Fendorf, Arsenite retention mechanisms within estuarine sediments of Pescadero, CA. Environ. Sci. Technol. 2004, 38, 3299.
Arsenite retention mechanisms within estuarine sediments of Pescadero, CA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1Kht7c%3D&md5=69749f03b6f9dfc5af566b77359031b6CAS | 15260327PubMed |

[13]  M. F. Kirk, E. E. Roden, L. J. Crossey, A. J. Brealey, M. N. Spilde, Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors. Geochim. Cosmochim. Acta 2010, 74, 2538.
Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFSnsbs%3D&md5=6f1f2a7fb46238063f5f21d7b12a13feCAS |

[14]  B. D. Kocar, T. Borch, S. Fendorf, Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite. Geochim. Cosmochim. Acta 2010, 74, 980.
Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SlsbrN&md5=340b591e48216db213c0248a74b6d15dCAS |

[15]  E. D. Burton, S. G. Johnston, R. T. Bush, Microbial sulfidogenesis in ferrihydrite-rich environments: effects on iron mineralogy and arsenic mobility. Geochim. Cosmochim. Acta 2011, 75, 3072.
Microbial sulfidogenesis in ferrihydrite-rich environments: effects on iron mineralogy and arsenic mobility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlyksbk%3D&md5=caf6b42cafe9ec5d1bd925bd7ac9c6d2CAS |

[16]  S. L. Saalfield, B. C. Bostick, Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems. Environ. Sci. Technol. 2009, 43, 8787.
Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlaltbjK&md5=98b2e3ee1a69fc5efe6bd60d783d86a8CAS | 19943647PubMed |

[17]  T. J. Gallegos, Y.-S. Han, K. F. Hayes, Model predictions of realgar precipitation by reaction of AsIII with synthetic mackinawite under anoxic conditions. Environ. Sci. Technol. 2008, 42, 9338.
Model predictions of realgar precipitation by reaction of AsIII with synthetic mackinawite under anoxic conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKlsrvM&md5=3d837bdf5a75ab12ddba947b7a5041acCAS | 19174913PubMed |

[18]  E. Suess, A. C. Scheinost, B. C. Bostick, B. J. Merkel, D. Wallschläger, B. Planer-Friedrich, Discrimination of thioarsenites and thioarsenates by X-ray absorption spectroscopy. Anal. Chem. 2009, 81, 8318.
Discrimination of thioarsenites and thioarsenates by X-ray absorption spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGls7nF&md5=6561f450cad2cabd3162a92fb4b70ac6CAS | 19764741PubMed |

[19]  F. Wang, A. Tessier, Polysulfide and metal speciation in sediment porewaters of freshwater lakes. Environ. Sci. Technol. 2009, 43, 7252.
Polysulfide and metal speciation in sediment porewaters of freshwater lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFyrtrc%3D&md5=e32c3cbe38c2e34f851156fe80f529bdCAS | 19848130PubMed |

[20]  R. M. Couture, C. Gobeil, A. Tessier, Arsenic, iron and sulfur co-diagenesis in lake sediments. Geochim. Cosmochim. Acta 2010, 74, 1238.
Arsenic, iron and sulfur co-diagenesis in lake sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVCjtg%3D%3D&md5=368fbb75654d99ddcb78aed836594a80CAS |

[21]  P. Langner, C. Mikutta, R. Kretzschmar, Arsenic sequestration by organic sulphur in peat. Nat. Geosci. 2012, 5, 66.
Arsenic sequestration by organic sulphur in peat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFeit7%2FK&md5=f2819aacab8d1ab22895cac04c915435CAS |

[22]  M. Hoffmann, C. Mikutta, R. Kretzschmar, Bisulfide reaction with natural organic matter enhances arsenite sorption: insights from x-ray absorption spectroscopy. Environ. Sci. Technol. 2012, 46, 11788.
Bisulfide reaction with natural organic matter enhances arsenite sorption: insights from x-ray absorption spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWhur7J&md5=a1c01ec591da015ca2c321dd4a1feef8CAS | 23075303PubMed |

[23]  J. P. Werne, T. W. Lyons, D. J. Hollander, S. Schouten, E. C. Hopmans, J. S. Sinninghe Damsté, Investigating pathways of diagenetic organic matter sulfurization using compound-specific sulfur isotope analysis. Geochim. Cosmochim. Acta 2008, 72, 3489.
Investigating pathways of diagenetic organic matter sulfurization using compound-specific sulfur isotope analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFarsb8%3D&md5=78f751f53af9315375b7f6c0472e9bdfCAS |

[24]  M. Yücel, S. K. Konovalov, T. S. Moore, C. P. Janzen, G. W. Luther, Sulfur speciation in the upper black sea sediments. Chem. Geol. 2010, 269, 364.
Sulfur speciation in the upper black sea sediments.Crossref | GoogleScholarGoogle Scholar |

[25]  N. R. Urban, K. Ernst, S. Bernasconi, Addition of sulfur to organic matter during early diagenesis of lake sediments. Geochim. Cosmochim. Acta 1999, 63, 837.
Addition of sulfur to organic matter during early diagenesis of lake sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1Sns78%3D&md5=23c00a0fb22c4516e54938d5c22f4fffCAS |

[26]  R. M. Couture, B. Shafei, P. Van Cappellen, A. Tessier, C. Gobeil, Non-steady state modeling of arsenic diagenesis in lake sediments. Environ. Sci. Technol. 2010, 44, 197.
Non-steady state modeling of arsenic diagenesis in lake sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSrtrfL&md5=cefd82fef8b62a62a12dba889f09f1ccCAS | 19957997PubMed |

[27]  C. Pallud, C. Meile, A. M. Laverman, J. Abell, P. Van Cappellen, The use of flow-through sediment reactors in biogeochemical kinetics: methodology and examples of applications. Mar. Chem. 2007, 106, 256.
The use of flow-through sediment reactors in biogeochemical kinetics: methodology and examples of applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFSmurk%3D&md5=07cd7535213cf8d931e1b3a708b465ddCAS |

[28]  D. Fortin, G. G. Leppard, A. Tessier, Caracteristics of lacustrine diagenetic iron oxyhydroxide. Geochim. Cosmochim. Acta 1993, 57, 4391.
Caracteristics of lacustrine diagenetic iron oxyhydroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlvV2ktA%3D%3D&md5=7cd7f9335869e66b65e96f429d36c4e7CAS |

[29]  S. G. Benner, C. M. Hansel, B. W. Wielinga, T. M. Barber, S. Fendorf, Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions. Environ. Sci. Technol. 2002, 36, 1705.
Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvFymsbk%3D&md5=ea57554880f3791e56b668d043451b54CAS | 11993867PubMed |

[30]  F. Wang, A. Tessier, J. Buffle, Voltammetric determination of elemental sulfur in pore waters. Limnol. Oceanogr. 1998, 43, 1353.
Voltammetric determination of elemental sulfur in pore waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlOnu7g%3D&md5=f29fd23b6915187881a49ef45d25f880CAS |

[31]  B. Planer-Friedrich, D. Wallschläger, A critical investigation of hydride generation-based arsenic speciation in sulfidic waters. Environ. Sci. Technol. 2009, 43, 5007.
A critical investigation of hydride generation-based arsenic speciation in sulfidic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlelsbg%3D&md5=082d56d4231117db3374fc11330d12ffCAS | 19673299PubMed |

[32]  D. G. Beak, R. T. Wilkin, R. G. Ford, S. D. Kelly, Examination of arsenic speciation in sulfidic solutions using X-ray absorption spectroscopy. Environ. Sci. Technol. 2008, 42, 1643.
Examination of arsenic speciation in sulfidic solutions using X-ray absorption spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1CjtLk%3D&md5=e0c8104498519db6bcbaf2aaa21e0262CAS | 18441815PubMed |

[33]  D. Wallschläger, J. London, Determination of methylated arsenic-sulfur compounds in groundwater. Environ. Sci. Technol. 2008, 42, 228.
Determination of methylated arsenic-sulfur compounds in groundwater.Crossref | GoogleScholarGoogle Scholar | 18350901PubMed |

[34]  B. Ravel, M. Newville, Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537.
Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlCntLo%3D&md5=3352866b98f8433d863db2225c798ea1CAS | 15968136PubMed |

[35]  D. Wallschläger, C. J. Stadey, Determination of (oxy)thioarsenates in sulfidic waters. Anal. Chem. 2007, 79, 3873.
Determination of (oxy)thioarsenates in sulfidic waters.Crossref | GoogleScholarGoogle Scholar | 17437336PubMed |

[36]  G. R. Helz, J. A. Tossell, J. M. Charnock, R. A. D. Pattrick, D. J. Vaughan, D. Garner, Oligomerization in AsIII sulfide solutions: theoretical constraints and spectroscopic evidence. Geochim. Cosmochim. Acta 1995, 59, 4591.
Oligomerization in AsIII sulfide solutions: theoretical constraints and spectroscopic evidence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXps1ylsr8%3D&md5=8232b4ae22c627acb46ce629a289ba42CAS |

[37]  J. James-Smith, J. Cauzid, D. Testemale, W. H. Liu, J. L. Hazemann, O. Proux, B. Etschmann, P. Philippot, D. Banks, P. Williams, J. Brugger, Arsenic speciation in fluid inclusions using micro-beam X-ray absorption spectroscopy. Am. Mineral. 2010, 95, 921.
Arsenic speciation in fluid inclusions using micro-beam X-ray absorption spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1ymt7Y%3D&md5=7ddf9108461c61f8e5db2382c581e5deCAS |

[38]  R.-M. Couture, J. C. Rose, N. Kumar, K. Mitchell, D. Wallschläger, P. Van Cappellen, Sorption of arsenite, arsenate and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation. Environ. Sci. Technol. 2013, 47, 5652.
Sorption of arsenite, arsenate and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1ymu7s%3D&md5=70c491409988f77d332f5efe30501f8bCAS | 23607702PubMed |

[39]  A. Manceau, K. L. Nagy, Quantitative analysis of sulfur functional groups in natural organic matter by xanes spectroscopy. Geochim. Cosmochim. Acta 2012, 99, 206.
Quantitative analysis of sulfur functional groups in natural organic matter by xanes spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12ksrzP&md5=91028b8e6f1a56930fd295e6f043027fCAS |

[40]  Y. P. Hsieh, Y. N. Shieh, Analysis of reduced inorganic sulfur by diffusion methods: Improved apparatus and evaluation for sulfur isotopic studies. Chem. Geol. 1997, 137, 255.
Analysis of reduced inorganic sulfur by diffusion methods: Improved apparatus and evaluation for sulfur isotopic studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlGqsr8%3D&md5=f7dd067c9410f1d4dbe07ada38401691CAS |

[41]  E. D. Burton, L. A. Sullivan, R. T. Bush, S. G. Johnston, A. F. Keene, A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils. Appl. Geochem. 2008, 23, 2759.
A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGnsLjK&md5=24d8a0a2f98b046bb8fad3cf9cc39db4CAS |

[42]  D. L. Parkhurst, C. A. J. Apello, User’s guide to PHREEQC (Version 2) : a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259 1999 (US Geological Survey: Denver, CO). Available at http://pubs.er.usgs.gov/publication/wri994259 [Verified 28 June 2013].

[43]  D. Canfield, E. Kristensen, B. Thamdrup, Advances in Marine Biology: Aquatic Geomicrobiology, vol. 48 (Eds AJ Southward, PA Tyler, CM Young, LA Fuiman) 2005 (Elsevier Academic Press: San Diego, CA).

[44]  E. D. Burton, R. T. Bush, S. G. Johnston, L. A. Sullivan, A. F. Keene, Sulfur biogeochemical cycling and novel Fe–S mineralization pathways in a tidally re-flooded wetland. Geochim. Cosmochim. Acta 2011, 75, 3434.
Sulfur biogeochemical cycling and novel Fe–S mineralization pathways in a tidally re-flooded wetland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVWnt78%3D&md5=2c2e41f285ef36f6eac2da6be3e19d13CAS |

[45]  S. W. Poulton, M. D. Krom, R. Raiswell, A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim. Cosmochim. Acta 2004, 68, 3703.
A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1Cns70%3D&md5=a5b95d94d8af7f886bc8773d9b862891CAS |

[46]  J. P. Werne, D. J. Hollander, T. W. Lyons, J. S. Sinninghe Damsté, Organic sulfur biogeochemistry: recent advances and future research directions. Spec. Pap. Geol. Soc. Am. 2004, 379, 135.

[47]  G. R. Helz, J. A. Tossell, Thermodynamic model for arsenic speciation in sulfidic waters: a novel use of ab initio computations. Geochim. Cosmochim. Acta 2008, 72, 4457.
Thermodynamic model for arsenic speciation in sulfidic waters: a novel use of ab initio computations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGjtrfL&md5=97501cf0aef922b5a8b9599ecc86550aCAS |

[48]  D. Solomon, J. Lehmann, M. Tekalign, F. Fritzsche, W. Zech, Sulfur fractions in particle-size separates of the sub-humid ethiopian highlands as influenced by land use changes. Geoderma 2001, 102, 41.
Sulfur fractions in particle-size separates of the sub-humid ethiopian highlands as influenced by land use changes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFWmtb0%3D&md5=7a1d6d0d6be2c998772d6a503d9557d8CAS |

[49]  J. r. Prietzel, A. Botzaki, N. Tyufekchieva, M. Brettholle, J. r. Thieme, W. Klysubun, Sulfur speciation in soil by s k-edge xanes spectroscopy: comparison of spectral deconvolution and linear combination fitting. Environ. Sci. Technol. 2011, 45, 2878.
Sulfur speciation in soil by s k-edge xanes spectroscopy: comparison of spectral deconvolution and linear combination fitting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFKqtro%3D&md5=5bae1da47bde46ff8c244b9664493284CAS |

[50]  B. Morgan, E. D. Burton, A. W. Rate, Iron monosulfide enrichment and the presence of organosulfur in eutrophic estuarine sediments. Chem. Geol. 2012, 296–297, 119.
Iron monosulfide enrichment and the presence of organosulfur in eutrophic estuarine sediments.Crossref | GoogleScholarGoogle Scholar |

[51]  M. L. Farquhar, J. M. Charnock, F. R. Livens, D. J. Vaughan, Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: an X-ray absorption spectroscopy study. Environ. Sci. Technol. 2002, 36, 1757.
Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: an X-ray absorption spectroscopy study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVeqtL8%3D&md5=805ea76aaf0962c3036a7fef61b30ae7CAS | 11993874PubMed |

[52]  B. Planer-Friedrich, E. Suess, A. C. Scheinost, D. Wallschlger, Arsenic speciation in sulfidic waters: reconciling contradictory spectroscopic and chromatographic evidence. Anal. Chem. 2010, 82, 10 228.
Arsenic speciation in sulfidic waters: reconciling contradictory spectroscopic and chromatographic evidence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyitLbL&md5=6fe5f147d49ad776b6d334afb0273478CAS |

[53]  R.-M. Couture, P. Van Cappellen, Reassessing the role of sulfur geochemistry on arsenic speciation in reducing environments. J. Hazard. Mater. 2011, 189, 647.
Reassessing the role of sulfur geochemistry on arsenic speciation in reducing environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlems7o%3D&md5=226c6f05a31a4cf998267c74b1054ab9CAS | 21382662PubMed |

[54]  E. Suess, B. Planer-Friedrich, Thioarsenate formation upon dissolution of orpiment and arsenopyrite. Chemosphere 2012, 89, 1390.
Thioarsenate formation upon dissolution of orpiment and arsenopyrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFGmtrg%3D&md5=9c7184d6375ad2249ce7613bff4f0647CAS | 22771176PubMed |

[55]  E. Suess, D. Wallschläger, B. Planer-Friedrich, Stabilization of thioarsenates in iron-rich waters. Chemosphere 2011, 83, 1524.
Stabilization of thioarsenates in iron-rich waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFylt7c%3D&md5=553d677d9fe8ec4bde7c8791e68d55f8CAS | 21324509PubMed |

[56]  B. Planer-Friedrich, D. Franke, B. Merkel, D. Wallschläger, Acute toxicity of thioarsenates to Vibrio fischeri. Environ. Toxicol. Chem. 2008, 27, 2027.
Acute toxicity of thioarsenates to Vibrio fischeri.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Sgur%2FN&md5=419e407f98c7e6a96d381a5d934e028dCAS | 18422398PubMed |

[57]  R.-M. Couture, A. Sekowska, G. Fang, A. Danchin, Linking selenium biogeochemistry to the sulfur-dependent biological detoxification of arsenic. Environ. Microbiol. 2012, 14, 1612.
Linking selenium biogeochemistry to the sulfur-dependent biological detoxification of arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtleht7%2FO&md5=d9c848fbbaf9baf21b6b4230b0b2af9fCAS | 22515279PubMed |