Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Are photochemical oxidant control strategies robust to the choice of chemical mechanism?

Richard G. Derwent A C and Tim P. Murrells B
+ Author Affiliations
- Author Affiliations

A rdscientific, Newbury, Berkshire, RG14 6LH, United Kingdom.

B Ricardo–AEA, Fermi Avenue, Harwell, Oxfordshire, OX11 0QR, United Kingdom.

C Corresponding author. Email: r.derwent@btopenworld.com

Environmental Chemistry 10(3) 234-244 https://doi.org/10.1071/EN12150
Submitted: 5 October 2012  Accepted: 20 February 2013   Published: 1 May 2013

Environmental context. Throughout the world there are many places where ozone levels are elevated above internationally accepted guidelines set to protect human health. Policy makers use air quality models to formulate emission control strategies to achieve these air quality goals for ozone. There are large uncertainties in these air quality models that mask the sensitivity of the model control strategies to chemical mechanism choice.

Abstract. Monte Carlo sampling of pre-specified parameter ranges has been used to replace a single ‘best estimate’ photochemical trajectory model run with 11 694 ‘acceptable’ model runs that are each consistent with the observations of elevated O3 during the PUMA (Pollution in the Urban Midlands Atmosphere) campaign in the UK, West Midlands during 1999. These 11 694 ‘acceptable’ parameter sets were then used for probabilistic evaluation of photochemical oxidant control strategies, based on 30 % reductions in volatile organic compounds and NOx precursor emissions and on precursor emission projections to 2020. The sensitivity of single ‘best estimate’ model runs to chemical mechanism choice gave some indication of the robustness of photochemical oxidant control strategies. However, Monte Carlo parametric uncertainty analysis showed that sensitivity to mechanism choice failed to indicate the magnitudes of the likely uncertainty ranges in the O3 responses to photochemical oxidant control strategies. Furthermore, Monte Carlo uncertainty analysis showed that there may be O3 air quality disbenefits from 30 % NOx emission reduction that were not apparent from ‘best estimate’ runs.


References

[1]  D. W. Byun, K. L. Schere, Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modelling system. Appl. Mech. Rev. 2006, 59, 51.
Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modelling system.Crossref | GoogleScholarGoogle Scholar |

[2]  D. J. Luecken, S. Phillips, G. Sarwar, C. Jang, Effects of using the CB05 vs. SAPRC99 vs. CB4 chemical mechanism on model predictions: ozone and gas-phase photochemical precursor concentrations. Atmos. Environ. 2008, 42, 5805.
Effects of using the CB05 vs. SAPRC99 vs. CB4 chemical mechanism on model predictions: ozone and gas-phase photochemical precursor concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVaisb4%3D&md5=d32531416a76ad846aef7ad13a1a1398CAS |

[3]  M. W. Gery, G. Z. Whitten, J. P. Killus, M. C. Dodge, A photochemical kinetics mechanism for urban and regional scale computer modelling. J. Geophys. Res. 1989, 94, 12925.
A photochemical kinetics mechanism for urban and regional scale computer modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvFKrsL4%3D&md5=a25e6461dfd3fc71eb2a529016b7253eCAS |

[4]  G. Yarwood, S. Rao, M. Yocke, G. Z. Whitten, Updates to the Carbon Bond chemical mechanism: CB05. Final Report prepared for US EPA. Available at http://www.camx.com/publ/pdfs/CB05_Final_Report_120805.pdf [Verified 8 March 2013].

[5]  W. P. L. Carter, SAPRC-99 mechanism files and associated programs and examples 2000, updated 30 March 2010 (University of California – Riverside). Available at http://www.cert.ucr.edu/~carter/SAPRC99 [Verified 8 March 2013].

[6]  H. E. Jeffries, Photochemical air pollution, in Composition, Chemistry and Climate of the Atmosphere (Ed. H. B. Singh) 1995, pp. 308–347 (Van Nostrand Reinhold: New York).

[7]  S. R. Hanna, J. C. Chang, M. E. Fernau, Monte Carlo estimates of uncertainties in predictions by a photochemical grid model (UAM-IV) due to uncertainties in input variable. Atmos. Environ. 1998, 32, 3619.
Monte Carlo estimates of uncertainties in predictions by a photochemical grid model (UAM-IV) due to uncertainties in input variable.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtFCrt7g%3D&md5=c81e3b2a3e5d1c734b4697412e35259bCAS |

[8]  S. R. Hanna, Z. Lu, H. C. Frey, N. Wheeler, J. Vukovich, S. Arunachalam, M. Fernau, D. A. Hansen, Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain. Atmos. Environ. 2001, 35, 891.
Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslals7s%3D&md5=410e3d5c9c75abccc1acf7315010ed00CAS |

[9]  S. R. Hanna, J. M. Davis, Evaluation of a photochemical grid model using estimates of concentration probability density functions. Atmos. Environ. 2002, 36, 1793.
Evaluation of a photochemical grid model using estimates of concentration probability density functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivValt7Y%3D&md5=a936abc834873a4a3e33eece631c0d61CAS |

[10]  D. S. Cohan, B. Koo, G. Yarwood, Influence of uncertain reaction rates on ozone sensitivity to emissions. Atmos. Environ. 2010, 44, 3101.
Influence of uncertain reaction rates on ozone sensitivity to emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovV2mu74%3D&md5=a4cd748966113b618a879bd6cb666f0aCAS |

[11]  M. E. Jenkin, S. M. Saunders, V. Wagner, M. J. Pilling, Protocol for the development of the Master Chemical Mechanism, MCMv3, Part B. Tropospheric degradation of aromatic volatile organic Compounds. Atmos. Chem. Phys. 2003, 3, 181.
Protocol for the development of the Master Chemical Mechanism, MCMv3, Part B. Tropospheric degradation of aromatic volatile organic Compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Sntrw%3D&md5=0145ea2e3046ed18a736df85992d5c73CAS |

[12]  R. G. Derwent, M. E. Jenkin, S. M. Saunders, Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions. Atmos. Environ. 1996, 30, 181.
Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSitrrO&md5=190399bc9e4e2f37f23e967433b107feCAS |

[13]  R. G. Derwent, M. E. Jenkin, S. M. Saunders, M. J. Pilling, Photochemical ozone creation potentials for organic compounds in northwest Europe calculated with a MASTER CHEMICAL MECHANISM. Atmos. Environ. 1998, 32, 2429.
Photochemical ozone creation potentials for organic compounds in northwest Europe calculated with a MASTER CHEMICAL MECHANISM.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXks1Cmu74%3D&md5=cbd5cfaa963b67667f7250eb6276298fCAS |

[14]  S. S. Abdalmogith, R. M. Harrison, R. G. Derwent, Particulate sulphate and nitrate in southern England and Northern Ireland during 2002/3 and its formation in a photochemical trajectory model. Sci. Total Environ. 2006, 368, 769.
Particulate sulphate and nitrate in southern England and Northern Ireland during 2002/3 and its formation in a photochemical trajectory model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFeqsrk%3D&md5=94fde2a10e463e64a8f093c0e9c31db3CAS | 16624378PubMed |

[15]  D. Johnson, S. R. Utembe, M. E. Jenkin, R. G. Derwent, G. D. Hayman, M. R. Alfarra, H. Coe, G. McFiggans, Simulating regional scale secondary organic aerosol formation during the TORCH 2003 campaign in the southern UK. Atmos. Chem. Phys. 2006, 6, 403.
Simulating regional scale secondary organic aerosol formation during the TORCH 2003 campaign in the southern UK.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xks1Kquro%3D&md5=6e6bd21be5ecb58234577da6e06ed337CAS |

[16]  R. G. Derwent, C. Witham, A. Redington, M. Jenkin, J. Stedman, R. Yardley, G. Hayman, Particulate matter at a rural location in southern England during 2006: model sensitivities to precursor emissions. Atmos. Environ. 2009, 43, 689.
Particulate matter at a rural location in southern England during 2006: model sensitivities to precursor emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFOg&md5=844f324ffedc1eb6df2a51bfa0a5f3d9CAS |

[17]  R. G. Derwent, P. G. Simmonds, A. J. Manning, T. G. Spain, Trends over a 20-year period from 1987 to 2007 in surface ozone at the atmospheric research station, Mace Head, Ireland. Atmos. Environ. 2007, 41, 9091.
Trends over a 20-year period from 1987 to 2007 in surface ozone at the atmospheric research station, Mace Head, Ireland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOisr7F&md5=cc70042315e539eb413d1a1956089c3fCAS |

[18]  A. M. Fjaeraa, Data report 2004. Acidifying and eutrophying compounds. EMEP/CCC-Report 1/2006 2006 (Norwegian Institute for Air Research: Kjeller, Norway).

[19]  C. Bloss, V. Wagner, M. E. Jenkin, R. Volkamer, W. J. Bloss, J. D. Lee, D. E. Heard, K. Wirtz, M. Martin-Reviejo, G. Rea, J. C. Wenger, M. J. Pilling, Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons. Atmos. Chem. Phys. 2005, 5, 641.
Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyrtrs%3D&md5=cfca9a376e970cd5a081af5c9e6eb92aCAS |

[20]  S. M. Saunders, M. E. Jenkin, R. G. Derwent, M. J. Pilling, Protocol for the development of the Master Chemical Mechanism, MCM v3, Part A. Tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 161.
Protocol for the development of the Master Chemical Mechanism, MCM v3, Part A. Tropospheric degradation of non-aromatic volatile organic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Sntr8%3D&md5=7a107969d806fb78916aefa45c5cb0c7CAS |

[21]  M. E. Jenkin, L. A. Watson, S. R. Utembe, D. E. Shallcross, A common reactive intermediates (CRI) mechanism for VOC degradation. Part 1. Gas phase mechanism development. Atmos. Environ. 2008, 42, 7185.
A common reactive intermediates (CRI) mechanism for VOC degradation. Part 1. Gas phase mechanism development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSru7bP&md5=0712b290639da092b78f2e486e9f2a5cCAS |

[22]  W. P. L. Carter, Development of a condensed SAPRC-07 chemical mechanism. Report to the California Air Resources Board Contract Number 05–750 2010 (Center for Environmental Research and Technology, University of California: Riverside, CA). Available at http://www.cert.ucr.edu/~carter/absts.htm#csaprc07 [Verified 8 March 2013].

[23]  R. M. Harrison, J. Yin, R. M. Tilling, X. Cai, P. W. Seakins, J. R. Hopkins, D. L. Lansley, A. C. Lewis, M. C. Hunter, D. E. Heard, L. J. Carpenter, D. J. Creasey, J. D. Lee, M. J. Pilling, N. Carslaw, K. M. Emmerson, A. Redington, R. G. Derwent, D. Ryall, G. Mills, S. A. Penkett, Measurement and modelling of air pollution and atmospheric chemistry in the UK West Midlands conurbation: overview of the PUMA Consortium project. Sci. Total Environ. 2006, 360, 5.
Measurement and modelling of air pollution and atmospheric chemistry in the UK West Midlands conurbation: overview of the PUMA Consortium project.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFCls7s%3D&md5=7684de447dedaa0c4267914a3b9cbe92CAS | 16289266PubMed |

[24]  H. L. Walker, R. G. Derwent, R. Donovan, J. Baker, Photochemical trajectory modelling of ozone during the summer PUMA campaign in the UK West Midlands. Sci. Total Environ. 2009, 407, 2012.
Photochemical trajectory modelling of ozone during the summer PUMA campaign in the UK West Midlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Sjt7k%3D&md5=57ba9d15e5b9548858fb1554d4b5ac41CAS | 19091384PubMed |

[25]  A. J. Manning, D. B. Ryall, R. G. Derwent, P. G. Simmonds, S. O’Doherty, Estimating European emissions of ozone-depleting and greenhouse gases using observations and a modelling back-attribution technique. J. Geophys. Res. 2003, 108, 4405.
Estimating European emissions of ozone-depleting and greenhouse gases using observations and a modelling back-attribution technique.Crossref | GoogleScholarGoogle Scholar |

[26]  R. Atkinson, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, J. A. Kerr, M. J. Rossi, J. Troe, Evaluated kinetic data 2006 (Centre for Atmospheric Science: Cambridge, UK). Available at http://www.iupac-kinetic.ch.cam.ac.uk/ [Verified 8 March 2013].

[27]  D. Derwent, A. Fraser, J. Abbott, M. Jenkin, P. Willis, T. Murrells, Evaluating the performance of air quality models. Issue 3, June 2010 (Defra, London, UK). Available at http://uk-air.defra.gov.uk/library/reports?section_id=20 [Verified 8 March 2013].

[28]  R. G. Derwent, C. S. Witham, S. R. Utembe, M. E. Jenkin, N. R. Passant, Ozone in central England: the impact of 20 years of precursor emission controls in Europe. Environ. Sci. Policy 2010, 13, 195.
Ozone in central England: the impact of 20 years of precursor emission controls in Europe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFOgsr8%3D&md5=c08a187c8f8ff4e993d26926aace7d54CAS |

[29]  WebDab (Emission database). Emissions as used in EMEP models 2008, updated 13 November 2012 (Centre on Emission Inventories and Projections). Available at http://www.ceip.at/webdab-emission-database/emissions-as-used-in-emep-models/ [Verified 12 April 2013].

[30]  C. Chatfield, Model uncertainty, in Encyclopaedia of Environmetrics (Eds A. El-Shaarawi, W.W. Piegorschs) 2002, vol. 3, pp. 1279–1283 (Wiley: Chichester, UK).

[31]  K. Beven, J. Freer, Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol. 2001, 249, 11.
Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology.Crossref | GoogleScholarGoogle Scholar |

[32]  T. Page, J. D. Whyatt, K. J. Beven, S. E. Metcalfe, Uncertainty in modelled estimates of acid deposition across Wales: a GLUE approach. Atmos. Environ. 2004, 38, 2079.
Uncertainty in modelled estimates of acid deposition across Wales: a GLUE approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislGjsL8%3D&md5=798b80a1b6ee9555a6e41d73a38b5719CAS |

[33]  S. K. Zak, K. Beven, B. Reynolds, Uncertainty in the estimation of critical loads: a practical methodology. Water Air Soil Pollut. 1997, 98, 297.
Uncertainty in the estimation of critical loads: a practical methodology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlslSgtrc%3D&md5=210079e6ee869cb8163abea6f4cdc91bCAS |

[34]  T. Page, J. D. Whyatt, S. E. Metcalfe, R. G. Derwent, C. Curtis, Assessment of uncertainties in a long range atmospheric transport model: methodology, application and implications in a UK context. Environ. Pollut. 2008, 156, 997.
Assessment of uncertainties in a long range atmospheric transport model: methodology, application and implications in a UK context.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSgtbrP&md5=cac64425ea6c66e6061ac05bc107760cCAS | 18572287PubMed |