Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Competitive ligand exchange reveals time dependant changes in the reactivity of Hg–dissolved organic matter complexes

Carrie L. Miller A B , Liyuan Liang A and Baohua Gu A
+ Author Affiliations
- Author Affiliations

A Environmental Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA.

B Corresponding author. Email: millercl@ornl.gov

Environmental Chemistry 9(6) 495-501 https://doi.org/10.1071/EN12096
Submitted: 13 July 2012  Accepted: 26 October 2012   Published: 11 December 2012

Journal Compilation © CSIRO Publishing 2012 Open Access CC BY-NC-ND

Environmental context. Mercury, a globally important pollutant, undergoes transformations in the environment to form methylmercury that is toxic to humans. Naturally occurring dissolved organic matter is a controller in these transformations, and we demonstrate that its strength of interaction with mercury is time dependent. These changes in complexation with dissolved organic matter are likely to affect mercury’s reactivity in aquatic systems, thereby influencing how mercury is methylated and bioaccumulated.

Abstract. Mercury interactions with dissolved organic matter (DOM) are important in aquatic environments but the kinetics of Hg binding to and repartitioning within the DOM remain poorly understood. We examined changes in Hg–DOM complexes using glutathione (GSH) titrations, coupled with stannous-reducible Hg measurements during Hg equilibration with DOM. In laboratory prepared DOM solutions and in water from a Hg-contaminated creek, a fraction of the Hg present as Hg–DOM complexes did not react to GSH addition. This unreactive Hg fraction increased with time from 13 % at 1 h to 74 % after 48 h of equilibration with a Suwannee River DOM. In East Fork Poplar Creek water in Oak Ridge, Tennessee, ~58 % of the DOM-complexed Hg was unreactive with GSH 1 h after the sample was collected. This time-dependent increase in unreactive Hg suggests that Hg forms stronger complexes with DOM over time. Alternatively the DOM-complexed Hg may become more sterically protected from the ligand exchange reactions, as the binding environment changes within the DOM over time. These results have important implications to understanding Hg transformations in the natural environment, particularly in contaminated aquatic systems due to non-equilibrium interactions between Hg and DOM.

Additional keywords: complexation, kinetics, organic ligands, reactive mercury.


References

[1]  M. Ravichandran, Interactions between mercury and dissolved organic matter – a review Chemosphere 2004, 55, 319.
Interactions between mercury and dissolved organic matter – a reviewCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFWgtbg%3D&md5=c55961ddb9e8bd30f7d595386ecb0599CAS |

[2]  J. M. Benoit, R. P. Mason, C. C. Gilmour, G. R. Aiken, Constants for mercury binding by dissolved organic matter isolates from the Florida Everglades Geochim. Cosmochim. Acta 2001, 65, 4445.
Constants for mercury binding by dissolved organic matter isolates from the Florida EvergladesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFens7w%3D&md5=349bde5c0128992f921073e3e027458fCAS |

[3]  J. D. Gasper, G. R. Aiken, J. N. Ryan, A critical review of three methods used for the measurement of mercury (Hg2+)-dissolved organic matter stability constants Appl. Geochem. 2007, 22, 1583.
A critical review of three methods used for the measurement of mercury (Hg2+)-dissolved organic matter stability constantsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1ylsrY%3D&md5=2abbd9315de6dd8ff01541b39f041a09CAS |

[4]  U. Skyllberg, Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: illumination of controversies and implications for MeHg net production J. Geophys. Res. – Biogeosciences 2008, 113, G00C03.
Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: illumination of controversies and implications for MeHg net productionCrossref | GoogleScholarGoogle Scholar |

[5]  C. R. Hammerschmidt, W. F. Fitzgerald, P. H. Balcom, P. T. Visscher, Organic matter and sulfide inhibit methylmercury production in sediments of New York/New Jersey Harbor Mar. Chem. 2008, 109, 165.
Organic matter and sulfide inhibit methylmercury production in sediments of New York/New Jersey HarborCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFKkt7w%3D&md5=677337ca189d0753c8fa82c13d8c136bCAS |

[6]  B. Allard, I. Arsenie, Abiotic reduction of mercury by humic substances in aquatic system – an important process for the mercury cycle Water Air Soil Pollut. 1991, 56, 457.
Abiotic reduction of mercury by humic substances in aquatic system – an important process for the mercury cycleCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsFygsbk%3D&md5=4370090e37cc7eb7720bc82710e92babCAS |

[7]  B. H. Gu, Y. R. Bian, C. L. Miller, W. M. Dong, X. Jiang, L. Y. Liang, Mercury reduction and complexation by natural organic matter in anoxic environments Proc. Natl. Acad. Sci. USA 2011, 108, 1479.
Mercury reduction and complexation by natural organic matter in anoxic environmentsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Smt70%3D&md5=23df88dc7d12ecf1b16680a37144c93dCAS |

[8]  P. C. Pickhardt, N. S. Fisher, Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies Environ. Sci. Technol. 2007, 41, 125.
Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodiesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCit7nN&md5=54604fc61262a0aa6ee35f847c3cad16CAS |

[9]  C. L. Miller, G. Southworth, S. Brooks, L. Y. Liang, B. H. Gu, Kinetic controls on the complexation between mercury and dissolved organic matter in a contaminated environment Environ. Sci. Technol. 2009, 43, 8548.
Kinetic controls on the complexation between mercury and dissolved organic matter in a contaminated environmentCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1artb%2FP&md5=5bc8bf5637e02a157c8b1bf0615f162cCAS |

[10]  F. J. Black, K. W. Bruland, A. R. Flegal, Competing ligand exchange-solid phase extraction method for the determination of the complexation of dissolved inorganic mercury(II) in natural waters Anal. Chim. Acta 2007, 598, 318.
Competing ligand exchange-solid phase extraction method for the determination of the complexation of dissolved inorganic mercury(II) in natural watersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXps1Grs70%3D&md5=3b9e26922ec71cd3cd8d6e8ad3491c5eCAS |

[11]  A. J. Poulain, D. M. Orihel, M. Amyot, M. J. Paterson, H. Hintelmann, G. R. Southworth, Relationship to aquatic between the loading rate of inorganic mercury ecosystems and dissolved gaseous mercury production and evasion Chemosphere 2006, 65, 2199.
Relationship to aquatic between the loading rate of inorganic mercury ecosystems and dissolved gaseous mercury production and evasionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CqsbrM&md5=0d9b9ca4ca9e820c0e82b9a3d146449cCAS |

[12]  C. L. Babiarz, J. P. Hurley, S. R. Hoffmann, A. W. Andren, M. M. Shafer, D. E. Armstrong, Partitioning of total mercury and methylmercury to the colloidal phase in freshwaters Environ. Sci. Technol. 2001, 35, 4773.
Partitioning of total mercury and methylmercury to the colloidal phase in freshwatersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFOnsLY%3D&md5=cd1ff80441fa372935e36b5ae27335ffCAS |

[13]  W. M. Dong, Y. R. Bian, L. Y. Liang, B. H. Gu, Binding constants of mercury and dissolved organic matter determined by a modified ion exchange technique Environ. Sci. Technol. 2011, 45, 3576.
Binding constants of mercury and dissolved organic matter determined by a modified ion exchange techniqueCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVWmt7c%3D&md5=7f9113b468f340be4ed31da6f6246996CAS |

[14]  M. Haitzer, G. R. Aiken, J. N. Ryan, Binding of mercury(II) to dissolved organic matter: the role of the mercury-to-DOM concentration ratio Environ. Sci. Technol. 2002, 36, 3564.
Binding of mercury(II) to dissolved organic matter: the role of the mercury-to-DOM concentration ratioCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlWkurY%3D&md5=3940ab4225546541f4fc3fbdffd8105cCAS |

[15]  H. Hsu, D. L. Sedlak, Strong HgII complexation in municipal wastewater effluent and surface waters Environ. Sci. Technol. 2003, 37, 2743.
Strong HgII complexation in municipal wastewater effluent and surface watersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1GgtL0%3D&md5=43dc30e4c4b5f1cfeeb2f11119764e2cCAS |

[16]  C. H. Lamborg, C. M. Tseng, W. F. Fitzgerald, P. H. Balcom, C. R. Hammerschmidt, Determination of the mercury complexation characteristics of dissolved organic matter in natural waters with ‘reducible Hg’ titrations Environ. Sci. Technol. 2003, 37, 3316.
Determination of the mercury complexation characteristics of dissolved organic matter in natural waters with ‘reducible Hg’ titrationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksF2ktb4%3D&md5=876cd3eb848911d11588164890db1d3bCAS |

[17]  W. M. Dong, L. Y. Liang, S. Brooks, G. Southworth, B. H. Gu, Roles of dissolved organic matter in the speciation of mercury and methylmercury in a contaminated ecosystem in Oak Ridge, Tennessee Environ. Chem. 2010, 7, 94.
Roles of dissolved organic matter in the speciation of mercury and methylmercury in a contaminated ecosystem in Oak Ridge, TennesseeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt12jtLc%3D&md5=07fd655ec06c96f879d1057b3b3293a3CAS |

[18]  K. Xia, U. L. Skyllberg, W. F. Bleam, P. R. Bloom, E. A. Nater, P. A. Helmke, X-ray absorption spectroscopic evidence for the complexation of HgII by reduced sulfur in soil humic substances Environ. Sci. Technol. 1999, 33, 257.
X-ray absorption spectroscopic evidence for the complexation of HgII by reduced sulfur in soil humic substancesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1ylsLk%3D&md5=f5f439020c05d0248bd3338640a2c72fCAS |

[19]  D. Hesterberg, J. W. Chou, K. J. Hutchison, D. E. Sayers, Bonding of HgII to reduced organic sulfur in humic acid as affected by S/Hg ratio Environ. Sci. Technol. 2001, 35, 2741.
Bonding of HgII to reduced organic sulfur in humic acid as affected by S/Hg ratioCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFSlu7o%3D&md5=0bc3731a0573f67d8c9f6d43cc9cd249CAS |

[20]  R. T. Drexel, M. Haitzer, J. N. Ryan, G. R. Aiken, K. L. Nagy, Mercury(II) sorption to two Florida Everglades peats: evidence for strong and weak binding and competition by dissolved organic matter released from the peat Environ. Sci. Technol. 2002, 36, 4058.
Mercury(II) sorption to two Florida Everglades peats: evidence for strong and weak binding and competition by dissolved organic matter released from the peatCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsFSks78%3D&md5=ada8e551507dd9829ed28b10d39d0f69CAS |

[21]  U. Skyllberg, P. R. Bloom, J. Qian, C. M. Lin, W. F. Bleam, Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups Environ. Sci. Technol. 2006, 40, 4174.
Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groupsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVGgt70%3D&md5=53a66d029391f34b7ab0f7add7e30d99CAS |

[22]  S. H. Han, G. A. Gill, Determination of mercury complexation in coastal and estuarine waters using competitive ligand exchange method Environ. Sci. Technol. 2005, 39, 6607.
Determination of mercury complexation in coastal and estuarine waters using competitive ligand exchange methodCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVyit7o%3D&md5=5c9af7b2145dbe7057db813eb1563021CAS |

[23]  G. R. Aiken, D. M. McKnight, K. A. Thorn, E. M. Thurman, Isolationof hydrophilic organic-acids frm water using nonionic macroporous resins Org. Geochem. 1992, 18, 567.
Isolationof hydrophilic organic-acids frm water using nonionic macroporous resinsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvFyjtb4%3D&md5=cf6ffa59bf13fab6f294fa47f3bd2bb3CAS |

[24]  R. L. Malcolm, G. R. Aiken, E. C. Bowles, J. D. Malcolm, Isolation of Fulvic and Humic Acids from the Suwannee River, in Humic Substances in the Suwannee River, Georgia: Interactions, Properties, and Proposed Structures (Eds R. C. Averett, J. A. Leenheer, D. M. McKnight, K. A. Thorn) 1995 (United States Government Printing, US Geological Survey: Denver , CO).

[25]  S. M. Serkiz, E. M. Perdue, Isolation of dissolved organic matter form the suwannee river using reverse osmosis Water Res. 1990, 24, 911.
Isolation of dissolved organic matter form the suwannee river using reverse osmosisCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlt1Smt7k%3D&md5=c44eba28608b3b1ec6df968227b23513CAS |

[26]  H. Hsu-Kim, D. L. Sedlak, Similarities between inorganic sulfide and the strong HgII – complexing ligands in municipal wastewater effluent Environ. Sci. Technol. 2005, 39, 4035.
Similarities between inorganic sulfide and the strong HgII – complexing ligands in municipal wastewater effluentCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFCmt7w%3D&md5=dd20d1d2dcdb0958c053b27b523f1378CAS |

[27]  S. C. Brooks, G. R. Southworth, History of mercury use and environmental contamination at the Oak Ridge Y-12 Plant Environ. Pollut. 2011, 159, 219.
History of mercury use and environmental contamination at the Oak Ridge Y-12 PlantCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVahtbnF&md5=d44a3ed97d80e58354b03561cd00112dCAS |

[28]  N. S. Bloom, E. A. Crecelius, Determination of mercury in seawater at sub-nanogram per liter levels Mar. Chem. 1983, 14, 49.
Determination of mercury in seawater at sub-nanogram per liter levelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXht1eisQ%3D%3D&md5=e4175d28a4b31f558ad244922348c5edCAS |

[29]  D. L. Parkhurst, C. A. J. Appelo, User’s Guide to PHREEQC (Version 2) – A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations 2004 (US Geological Survey: Denver, CO).

[30]  P. D. Oram, X. J. Fang, Q. Fernando, P. Letkeman, D. Letkeman, The formation constants of mercury(II)-glutathione complexes Chem. Res. Toxicol. 1996, 9, 709.
The formation constants of mercury(II)-glutathione complexesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivVOqtbY%3D&md5=c3840410a67eb5ddcb4274bcd22e3a24CAS |

[31]  N. Bloom, W. F. Fitzgerald, Determination of volatile mercury species at the picogram level by low-temperature gas-chromatography with cold-vapor atomic fluorescence detection Anal. Chim. Acta 1988, 208, 151.
Determination of volatile mercury species at the picogram level by low-temperature gas-chromatography with cold-vapor atomic fluorescence detectionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXks1SmtrY%3D&md5=386b2ac3b97d928f0d0765f4262656f6CAS |

[32]  A. E. Martell, R. M. Smith, R. J. Motekaitis, NIST Critically Selected Stability Constants of Metal Complexes Data Base, NIST Std. Ref. Database # 46 1998 (US Department of Commerce: Gaithersburg, MD).

[33]  K. L. Nagy, A. Manceau, J. D. Gasper, J. N. Ryan, G. R. Aiken, Metallothionein-like multinuclear clusters of mercury(ii) and sulfur in peat Environ. Sci. Technol. 2011, 45, 7298.
Metallothionein-like multinuclear clusters of mercury(ii) and sulfur in peatCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1Oit7k%3D&md5=f1279f153b9a4cf2ba084ccc16597dccCAS |

[34]  C. A. Gerbig, C. S. Kim, J. P. Stegemeier, J. N. Ryan, G. R. Aiken, Formation of nanocolloidal metacinnabar in mercury-DOM-sulfide systems Environ. Sci. Technol. 2011, 45, 9180.
Formation of nanocolloidal metacinnabar in mercury-DOM-sulfide systemsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ClsbzI&md5=ef072acbfd920f33e2735357cbb160c3CAS |

[35]  M. Amyot, D. R. S. Lean, L. Poissant, M. R. Doyon, Distribution and transformation of elemental mercury in the St Lawrence River and Lake Ontario Can. J. Fish. Aquat. Sci. 2000, 57, 155.
Distribution and transformation of elemental mercury in the St Lawrence River and Lake OntarioCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVyqt74%3D&md5=e82522b4d070bbca2ac3437e05f0b904CAS |

[36]  G. M. Vandal, W. F. Fitzgerald, K. R. Rolfhus, C. H. Lamborg, Modeling the elemental mercury cycle in Pallette Lake, Wisconsin, USA Water Air Soil Pollut. 1995, 80, 529.
Modeling the elemental mercury cycle in Pallette Lake, Wisconsin, USACrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsVChtLo%3D&md5=8746491a4d07d96e5364db8cc2877128CAS |

[37]  D. M. Orihel, M. J. Paterson, P. J. Blanchfield, R. A. Bodaly, H. Hintelmann, Experimental evidence of a linear relationship between inorganic mercury loading and methylmercury accumulation by aquatic biota Environ. Sci. Technol. 2007, 41, 4952.
Experimental evidence of a linear relationship between inorganic mercury loading and methylmercury accumulation by aquatic biotaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFGgtb0%3D&md5=97a26da86e5c21091f5dbcfb82748db4CAS |

[38]  R. C. Harris, J. W. M. Rudd, M. Amyot, C. L. Babiarz, K. G. Beaty, P. J. Blanchfield, R. A. Bodaly, B. A. Branfireun, C. C. Gilmour, J. A. Graydon, A. Heyes, H. Hintelmann, J. P. Hurley, C. A. Kelly, D. P. Krabbenhoft, S. E. Lindberg, R. P. Mason, M. J. Paterson, C. L. Podemski, A. Robinson, K. A. Sandilands, G. R. Southworth, V. L. S. Louis, M. T. Tate, Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition Proc. Natl. Acad. Sci. USA 2007, 104, 16586.
Whole-ecosystem study shows rapid fish-mercury response to changes in mercury depositionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Wgs7rM&md5=c0b56fcb38ed76b920270428cf49951fCAS |

[39]  G. Southworth, S. Lindberg, H. Hintelmann, M. Amyot, A. Poulain, M. Bogle, M. Peterson, J. Rudd, R. Harris, K. Sandilands, D. Krabbenhoft, M. Olsen, Evasion of added isotopic mercury from a northern temperate lake Environ. Toxicol. Chem. 2007, 26, 53.
Evasion of added isotopic mercury from a northern temperate lakeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGgtA%3D%3D&md5=72652a8bcbeaa0c60f062a8579bcf0acCAS |

[40]  G. Aiken, H. Hsu-Kim, J. N. Ryan, Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids Environ. Sci. Technol. 2011, 45, 3196.
Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloidsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFKqt7k%3D&md5=976212de8b9db5d621f75e74acba9821CAS |