Effect of pH and environmental ligands on accumulation and toxicity of Ni2+ to Lemna minor
Yamini Gopalapillai A B D , Bernard Vigneault C and Beverley Hale AA School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
B Mining and Mineral Sciences Laboratories, Natural Resources Canada, 555 Booth Street, Ottawa, ON, K1A 0G1, Canada.
C Earth Sciences Sector, Natural Resources Canada, 601 Booth Street, Ottawa, ON, K1A 0E8, Canada.
D Corresponding author. Present address: Vale, 2060 Flavelle Boulevard, Mississauga, ON, L5K 1Z9, Canada. Email: ygopalap@uoguelph.ca
Environmental Chemistry 9(6) 547-557 https://doi.org/10.1071/EN12078
Submitted: 30 May 2012 Accepted: 8 November 2012 Published: 20 December 2012
Environmental context. Predicting metal toxicity is an important tool for effective and efficient risk assessment and regulation of metal pollution in the environment. The present study aims to provide scientific support for the development of a predictive Ni toxicity model for aquatic plants that is particularly applicable to mining-affected natural waters. We show that the effects of pH and natural organic ligands on Ni accumulation and toxicity can be modelled, but further research is required to understand the effects of flotation ligands used in the mining industry.
Abstract. Effects of water chemistry and metal speciation on metal uptake and toxicity to aquatic plants such as Lemna minor are not fully understood. The present study examined the effect of pH and environmental ligands (dissolved organic carbon (DOC) and mining related flotation ligands diethylenetriamine (DETA), triethylenetetramine (TETA), sodium isopropyl xanthate), on Ni toxicity to L. minor. Exposure and tissue residue toxicity thresholds were assessed to validate the use of a Biotic Ligand Model (BLM) or a Tissue Residue Approach (TRA) as a framework for predicting Ni toxicity. An increase in the activity of H+ non-linearly decreased the toxicity of free Ni ion activity, whereas Ni accumulation kinetics indicated that the mechanism of Ni2+ and H+ interaction was not competitive inhibition as expected by the BLM framework. The effect of DOC on the toxicity of total Ni concentration was relatively small (toxicity decreased by less than a factor of 2) and was explained solely by the complexation of Ni2+ by DOC. Alternatively, the protective effect of flotation ligands (DETA and TETA) was much less than expected based on estimated Ni complexation. Overall, a TRA model was directly applicable in the presence of organic ligands but not to varying pH, whereas a BLM-type model was applicable with changes in pH and DOC but not in the presence of the lesser studied flotation ligands. Such mechanistic information is essential for the development of reliable Ni toxicity models that would aid in risk assessment and regulation of Ni in the environment, particularly in mining-affected regions.
References
[1] P. R. Paquin, J. W. Gorsuch, S. Apte, G. E. Batley, K. C. Bowles, P. G. C. Campbell, C. G. Delos, D. M. Di Toro, R. L. Dwyer, F. Galvez, R. W. Gensemer, G. G. Goss, C. Hogstrand, C. R. Janssen, J. C. McGeer, R. B. Naddy, R. C. Playle, R. C. Santore, U. Schneider, W. A. Stubblefield, C. M. Wood, K. B. Wu, The biotic ligand model: a historical overview Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 2002, 133, 3.| The biotic ligand model: a historical overviewCrossref | GoogleScholarGoogle Scholar |
[2] K. Lock, H. Van Eeckhout, K. A. C. de Schamphelaere, P. Criel, C. R. Janssen, Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare) Chemosphere 2007, 66, 1346.
| Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSiu77I&md5=89b1c17785a7d8ed207bae74e6172958CAS |
[3] C. E. Schlekat, E. Van Genderen, K. A. C. de Schamphelaere, P. M. C. Antunes, E. C. Rogevich, W. A. Stubblefield, Cross-species extrapolation of chronic nickel Biotic Ligand Models Sci. Total Environ. 2010, 408, 6148.
| Cross-species extrapolation of chronic nickel Biotic Ligand ModelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlaqt7rP&md5=331d11672d66164eb8e109e2f11588b9CAS |
[4] R. Scroggins, Monitoring sublethal toxicity in effluent under the metal mining EEM program Water Qual. Res. J. Canada 2002, 37, 279.
| 1:CAS:528:DC%2BD38XhsFCns7s%3D&md5=01d6513c7e41632cfcabeb5e04fcac9dCAS |
[5] W. J. Adams, R. Blust, U. Borgmann, K. V. Brix, D. K. DeForest, A. S. Green, J. S. Meyer, J. C. McGeer, P. R. Paquin, P. S. Rainbow, C. M. Woody, Utility of tissue residues for predicting effects of metals onaquatic organisms Integr. Environ. Assess. Manag. 2011, 7, 75.
| Utility of tissue residues for predicting effects of metals onaquatic organismsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFOjsLk%3D&md5=7729687979536f5c9eaee9e2e122ead4CAS |
[6] L. S. McCarty, P. F. Landrum, S. N. Luoma, J. P. Meador, A. A. Merten, B. K. Shephard, A. P. van Wezelzz, Advancing environmental toxicology through chemical dosimetry: external exposures versus tissue residues Integr. Environ. Assess. Manag. 2011, 7, 7.
| Advancing environmental toxicology through chemical dosimetry: external exposures versus tissue residuesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFOjsLo%3D&md5=f270f2c6a41043740a453f5799e3a5e8CAS |
[7] E. Tipping, Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances Aquat. Geochem. 1998, 4, 3.
| Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substancesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlSjuro%3D&md5=bf2a0d3b7e8f4f604d20a53fa9cf3001CAS |
[8] L. Van Laer, E. Smolders, F. Degryse, C. Janssen, K. A. C. de Schamphelaere, Speciation of nickel in surface waters measured with the Donnan membrane technique Anal. Chim. Acta 2006, 578, 195.
| Speciation of nickel in surface waters measured with the Donnan membrane techniqueCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSitrjJ&md5=41d39fddef0386842968df2b9278f807CAS |
[9] S. C. Apte, G. E. Batley, Trace metal speciation of labile chemical species in natural waters and sediments: non-electrochemical approaches, Metal Speciation and Bioavailability in Aquatic Systems (Eds A. Tessier and D. R. Turner) 1995, pp. 259–306 (Wiley: Chichester, UK).
[10] Y. Gopalapillai, I. I. Fasfous, J. D. Murimboh, T. Yapici, P. Chakraborty, C. L. Chakrabarti, Determination of free nickel Ion concentrations using the ion exchange technique: application to aqueous mining and municipal effluents Aquat. Geochem. 2008, 14, 99.
| Determination of free nickel Ion concentrations using the ion exchange technique: application to aqueous mining and municipal effluentsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFeiur0%3D&md5=b5a5eb56f2dafd033113e5f6947081f4CAS |
[11] Y. Gopalapillai, C. L. Chakrabarti, D. R. S. Lean, Assessing toxicity of mining effluents: equilibrium- and kinetics-based metal speciation and algal bioassay Environ. Chem. 2008, 5, 307.
| Assessing toxicity of mining effluents: equilibrium- and kinetics-based metal speciation and algal bioassayCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWitLbO&md5=edbceda067c0021a2a69446a5a7536afCAS |
[12] A. Boullemant, M. Lavoie, C. Fortin, P. G. C. Campbell, Uptake of hydrophobic metal complexes by three freshwater algae: unexpected influence of pH Environ. Sci. Technol. 2009, 43, 3308.
| Uptake of hydrophobic metal complexes by three freshwater algae: unexpected influence of pHCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFemtbg%3D&md5=980801d4656af62cbc7e0f3d425d152fCAS |
[13] V. I. Slaveykova, K. J. Wilkinson, Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand model Environ. Chem. 2005, 2, 9.
| Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand modelCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisV2it7Y%3D&md5=01b01c9c451cf6f59545763443cc5783CAS |
[14] N. M. E. Deleebeeck, K. A. C. de Schamphelaere, C. R. Janssen, Effects of Mg2+ and H+ on the toxicity of Ni2+ to the unicellular green alga Pseudokirchneriella subcapitata: model development and validation with surface waters Sci. Total Environ. 2009, 407, 1901.
| Effects of Mg2+ and H+ on the toxicity of Ni2+ to the unicellular green alga Pseudokirchneriella subcapitata: model development and validation with surface watersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Sjsb0%3D&md5=2eb2a14c5e6770bb15a42aea864a36c3CAS |
[15] U. Borgmann, W. P. Norwood, D. G. Dixon, Modelling bioaccumulation and toxicity of metal mixtures Hum. Ecol. Risk Assess. 2008, 14, 266.
| Modelling bioaccumulation and toxicity of metal mixturesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks1eit7g%3D&md5=51ab79507de43fb632260f26f7bb5a53CAS |
[16] Biological test method: test for measuring the inhibition of growth using the freshwater macrophyte, Lemna minor. Environment Canada Environmental Protection Series, Report EPS 1/RM/37, 2nd edn 2007 (Ottawa, ON).
[17] Y. Gopalapillai, B. Hale, B. Vigneault, Effect of major cations (Ca2+, Mg2+, Na+, K+) and anions (SO42–, Cl–, NO3–) on Ni accumulation and toxicity in aquatic plant, Lemna minor L.: implications for Ni risk assessment. Environmental Toxicology and Chemistry, in press.
[18] F. F. Cantwell, J. S. Nielsen, S. E. Hrudey, Free nickel ion concentration in sewage by an ion exchange column-equilibration method Anal. Chem. 1982, 54, 1498.
| Free nickel ion concentration in sewage by an ion exchange column-equilibration methodCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XksVeqtLk%3D&md5=c3c39cf21ee473b2ce53b8e72d617072CAS |
[19] T. Cheng, K. de Schamphelaere, S. Lofts, C. Janssen, H. E. Allen, Measurement and computation of zinc binding to natural dissolved organic matter in European surface waters Anal. Chim. Acta 2005, 542, 230.
| Measurement and computation of zinc binding to natural dissolved organic matter in European surface watersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFGnsLo%3D&md5=18004fbef500aaabc1df6c059eecc4d1CAS |
[20] N. M. E. Deleebeeck, K. A. C. de Schamphelaere, C. R. Janssen, A bioavailability model predicting the toxicity of nickel to rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas) in synthetic and natural waters Ecotoxicol. Environ. Saf. 2007, 67, 1.
| A bioavailability model predicting the toxicity of nickel to rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas) in synthetic and natural watersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFGnurs%3D&md5=65076530b91f6c890719b1530e503d6bCAS |
[21] K. A. C. de Schamphelaere, C. R. Janssen, A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH Environ. Sci. Technol. 2002, 36, 48.
| A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pHCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslSgtbY%3D&md5=f62cf2e46a6ce4f3d9e1938f0cc5b741CAS |
[22] X. Wang, Y. Ma, L. Hua, M. J. McLaughlin, Identification of hydroxyl copper toxicity to barley (Hordeum vulgare) root elongation in solution culture Environ. Toxicol. Chem. 2009, 28, 662.
| Identification of hydroxyl copper toxicity to barley (Hordeum vulgare) root elongation in solution cultureCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisV2gsb4%3D&md5=16fd4207a3663b1dbfc8ce94ea16b1c9CAS |
[23] R. C. Playle, Modelling metal interactions at fish gills Sci. Total Environ. 1998, 219, 147.
| Modelling metal interactions at fish gillsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslWltrs%3D&md5=6e242fe71cbdf062a0859072bed04d18CAS |
[24] R. Reid, J. Hayes, Mechanisms and control of nutrient uptake in plants Int. Rev. Cytol. 2003, 229, 73.
| Mechanisms and control of nutrient uptake in plantsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktleisQ%3D%3D&md5=7e5586d977f29b4370baab131b234302CAS |
[25] L. François, C. Fortin, P. G. C. Campbell, pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: implications for an algal BLM Aquat. Toxicol. 2007, 84, 123.
| pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: implications for an algal BLMCrossref | GoogleScholarGoogle Scholar |
[26] K. S. Dodgson, B. Spencer, K. Williams, Examples of anti-competitive inhibition Nature 1956, 177, 432.
| Examples of anti-competitive inhibitionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XmvFKguw%3D%3D&md5=d2c65f397fe945e1fd23c8a7a44e215dCAS |
[27] S. Sobek, L. J. Tranvik, Y. T. Prairie, P. Kortelainen, J. J. Cole, Patterns and regulation of dissolved organic carbon: an analysis of 7500 widely distributed lakes Limnol. Oceanogr. 2007, 52, 1208.
| Patterns and regulation of dissolved organic carbon: an analysis of 7500 widely distributed lakesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1ymtbg%3D&md5=c65f004ecbafd1057e85555f1279b565CAS |
[28] B. Vigneault, P. G. C. Campbell, Uptake of cadmium by freshwater green algae: effects of pH and aquatic humic substances J. Phycol. 2005, 41, 55.
| Uptake of cadmium by freshwater green algae: effects of pH and aquatic humic substancesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVeqtLs%3D&md5=7ad8a69e0e985ce5477849690ff00adeCAS |
[29] B. Vigneault, A. Percot, M. Lafleur, P. G. C. Campbell, Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances Environ. Sci. Technol. 2000, 34, 3907.
| Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substancesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVSls7k%3D&md5=dc5f7e25381be8b53a32b780e2af13b6CAS |
[30] L. Parent, M. R. Twiss, P. G. C. Campbell, Influences of natural dissolved organic matter on the interaction of aluminum with the microalga Chlorella: a test of the free-ion model of trace metal toxicity Environ. Sci. Technol. 1996, 30, 1713.
| Influences of natural dissolved organic matter on the interaction of aluminum with the microalga Chlorella: a test of the free-ion model of trace metal toxicityCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVKnsr4%3D&md5=4bb09e13e4ea6ce068c92e7dbbefc624CAS |
[31] M. Block, P. Part, Increased availability of cadmium to perfused rainbow trout (Salmo gairdneri, Rich.) gills in the presence of the complexing agents diethyl dithiocarbamate, ethyl xanthate and isopropyl xanthate Aquat. Toxicol. 1986, 8, 295.
| Increased availability of cadmium to perfused rainbow trout (Salmo gairdneri, Rich.) gills in the presence of the complexing agents diethyl dithiocarbamate, ethyl xanthate and isopropyl xanthateCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlsVOktbc%3D&md5=f6fd9ec40665c145ff99e910d4fab6b4CAS |
[32] P. M. C. Antunes, B. A. Hale, The effect of metal diffusion and supply limitations on conditional stability constants determined for durum wheat roots Plant Soil 2006, 284, 229.
| The effect of metal diffusion and supply limitations on conditional stability constants determined for durum wheat rootsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntF2ju70%3D&md5=5d609f68754983a8ce57d639cb9cc2b1CAS |