Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Cd and Pb removal from contaminated environment by metal resistant bacterium Cupriavidus metallidurans CH34: importance of the complexation and competition effects

Rita Hajdu A and Vera I. Slaveykova B C
+ Author Affiliations
- Author Affiliations

A Environmental Biophysical Chemistry, IIE-ENAC, Swiss Federal Institute of Technology, Lausanne (EPFL), Station 2, CH-1015 Lausanne, Switzerland.

B Aquatic Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Faculty of Sciences, University of Geneva, 10, route de Suisse, CH-1290 Versoix, Switzerland.

C Corresponding author. Email: vera.slaveykova@unige.ch.

Environmental Chemistry 9(4) 389-398 https://doi.org/10.1071/EN12015
Submitted: 20 January 2012  Accepted: 5 June 2012   Published: 10 August 2012

Environmental context. Live bacteria are widely used to remove toxic metals from contaminated environments. We use the metal-resistant bacterium Cupriavidus metallidurans, in both model solutions and aqueous extracts of soils, to investigate the complexation and competition effects on Cd and Pb uptake. Accumulation of Cd was more affected by competition with Ca, Mg and Zn, whereas Pb accumulation was more influenced by complexation with humic acids. The study highlights the need to consider chemical site-specificity in the removal of metals from contaminated environments.

Abstract. The present study aims to improve the understanding of the role of complexation and competition effects on Cd and Pb accumulation by the metal resistant bacterium Cupriavidus metallidurans largely used in bioremediation. Adsorbed and intracellular metal content in bacteria were determined in model exposure medium within a concentration range spanning from 10–9 to 5 × 10–5 M of Cd or Pb and water extracts from soils. In parallel, the free metal ion concentrations ([M2+]) were measured by an ion exchange technique. Obtained results demonstrated that Cd and Pb accumulation by C. metallidurans was related to [M2+] in the solution. The adsorbed and intracellular M fractions were significantly reduced by nitrilotriacetic acid, Elliot or Pahokee Peat humic acids, as well as by a large excess of Ca, Mg and Zn. No effect on Cd and Pb bioaccumulation was observed in the presence of Mn, Cu or Co at a 10-fold excess for bacteria exposed to 10–6 M of Cd or Pb. Adsorbed and intracellular metal determined when bacteria were exposed to water extracts of soil were in the same order as expected from the model experiments when complexation and competition effects are considered. The study emphasises the necessity of taking into account chemical site-specificity of soil solutions and water, including dissolved organic ligands, pH and the presence of other metals when developing metal removal technologies by living bacteria.

Additional keywords: adsorbed metal, bioremediation, humic acid, intracellular metal, soil.


References

[1]  J. R. Peralta-Videa, M. L. Lopez, M. Narayan, G. Saupe, J. Gardea-Torresdey, The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int. J. Biochem. Cell Biol. 2009, 41, 1665.
The biochemistry of environmental heavy metal uptake by plants: implications for the food chain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1Oksrs%3D&md5=02927ac859655912082fd52f96f84291CAS |

[2]  G. M. Gadd, Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Biotechnol. 2009, 84, 13.
Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFajuw%3D%3D&md5=f87c25fc3515857af8d0b7446dc90739CAS |

[3]  H. Tabak, P. Lens, E. D. van Hullebusch, W. Dejonghe, Developments in bioremediation of soils and sediments polluted with metals and radionuclides – 1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev. Environ. Sci. Biotechnol. 2005, 4, 115.
Developments in bioremediation of soils and sediments polluted with metals and radionuclides – 1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVSmt7k%3D&md5=ad58735795304d1798ee03d29eb2ecafCAS |

[4]  G. M. Gadd, Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr. Opin. Biotechnol. 2000, 11, 271.
Bioremedial potential of microbial mechanisms of metal mobilization and immobilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksVGks7s%3D&md5=6f2a47593767c019f1ff7156159eb7beCAS |

[5]  R. De Philippis, G. Colica, E. Micheletti, Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl. Microbiol. Biotechnol. 2011, 92, 697.
Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process.Crossref | GoogleScholarGoogle Scholar |

[6]  V. I. Slaveykova, K. J. Wilkinson, Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand model. Environ. Chem. 2005, 2, 9.
Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisV2it7Y%3D&md5=01b01c9c451cf6f59545763443cc5783CAS |

[7]  R. Hajdu, J. P. Pinheiro, J. Galceran, V. I. Slaveykova, Modeling of Cd uptake and efflux kinetics in metal-resistant bacterium Cupriavidus metallidurans. Environ. Sci. Technol. 2010, 44, 4597.
Modeling of Cd uptake and efflux kinetics in metal-resistant bacterium Cupriavidus metallidurans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVShsrc%3D&md5=26f14ed2579718bf45cc8ed7ca8c3535CAS |

[8]  E. D. van Hullebusch, P. N. L. Lens, H. H. Tabak, Developments in bioremediation of soils and sediments polluted with metals and radionuclides. 3. Influence of chemical speciation and bioavailability on contaminants immobilization/mobilization bio-processes. Rev. Environ. Sci. Biotechnol. 2005, 4, 185.
Developments in bioremediation of soils and sediments polluted with metals and radionuclides. 3. Influence of chemical speciation and bioavailability on contaminants immobilization/mobilization bio-processes.Crossref | GoogleScholarGoogle Scholar |

[9]  M. Mergeay, D. H. Nies, H. G. Schlegel, Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 1985, 162, 328.
| 1:CAS:528:DyaL2MXitVWjsL8%3D&md5=2d1176de7ae8ec9f5c8371e6eb5ef455CAS |

[10]  D. H. Nies, Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 2003, 27, 313.
Efflux-mediated heavy metal resistance in prokaryotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVOlt7k%3D&md5=d212da5a7b76625cb1cdc9d9e4148df8CAS |

[11]  C. Keller, D. Hammer, Metal availability and soil toxicity after repeated cropping of Thlaspi caerulescens in metal contaminated soils. Environ. Pollut. 2004, 131, 243.
Metal availability and soil toxicity after repeated cropping of Thlaspi caerulescens in metal contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVSms7g%3D&md5=03c285262b84bff127f361046c7294acCAS |

[12]  R. W. Peters, Chelant extraction of heavy metals from contaminated soils. J. Hazard. Mater. 1999, 66, 151.
Chelant extraction of heavy metals from contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVGmtbc%3D&md5=3b2a1ba43608336afbfb93541c681170CAS |

[13]  F. Degryse, E. Smolders, D. R. Parker, Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review. Eur. J. Soil Sci. 2009, 60, 590.
Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGis7zK&md5=28bfea5b7b17d7e6746b7a838fe28c35CAS |

[14]  H. M. V. M. Soares, P. C. F. L. Conde, A. N. Almeida, M. T. S. D. Vasconcelos, Evaluation of n-substituted aminosulfonic acid pH buffers with a morpholinic ring for cadmium and lead speciation studies by electroanalytical techniques. Anal. Chim. Acta 1999, 394, 325.
Evaluation of n-substituted aminosulfonic acid pH buffers with a morpholinic ring for cadmium and lead speciation studies by electroanalytical techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksFWlu7Y%3D&md5=96fe07925b92e3c8dbb5be138b92286eCAS |

[15]  J. P. A. Gustafsson, Visual MINTEQ Ver. 2.53 2007 (KTH Royal Institute of Technology: Stockholm, Sweden). Available at http://www.lwr.kth.se/ [Verified 11 January 2012].

[16]  E. P. M. J. Fest, E. J. M. Temminghoff, R. J. Comans, W. H. Van Riemsdijk, Partitioning of organic matter and heavy metals in a sandy soil: effects of extracting solution, solid to liquid ratio and pH. Geoderma 2008, 146, 66.
Partitioning of organic matter and heavy metals in a sandy soil: effects of extracting solution, solid to liquid ratio and pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVOjs74%3D&md5=b66b4efffa3081959498022a1bf9aea6CAS |

[17]  C. S. Hassler, V. I. Slaveykova, K. J. Wilkinson, Discriminating between intra- and extracellular metals using chemical extractions. Limnol. Oceanogr. Methods 2004, 2, 237.
Discriminating between intra- and extracellular metals using chemical extractions.Crossref | GoogleScholarGoogle Scholar |

[18]  C. F. Keung, F. Guo, P. Qian, W. X. Wang, Influences of metal–ligand complexes on the cadmium and zinc biokinetics in the marine bacterium, Bacillus firmus. Environ. Toxicol. Chem. 2008, 27, 131.
Influences of metal–ligand complexes on the cadmium and zinc biokinetics in the marine bacterium, Bacillus firmus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKr&md5=2c78e8cf8c1cf5cb15ccfa65919f2aaeCAS |

[19]  I. A. M. Worms, J. Traber, D. Kistler, L. Sigg, V. I. Slaveykova, Uptake of CdII and PbII by microalgae in presence of colloidal organic matter from wastewater treatment plant effluents. Environ. Pollut. 2010, 158, 369.
Uptake of CdII and PbII by microalgae in presence of colloidal organic matter from wastewater treatment plant effluents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyks7vJ&md5=480d1c58746dd2e049aaf8e5714bb343CAS |

[20]  C. Fortin, P. G. C. Campbell, An ion-exchange technique for free-metal ion measurements (Cd2+, Zn2+): applications to complex aqueous media. Int. J. Environ. Anal. Chem. 1998, 72, 173.
An ion-exchange technique for free-metal ion measurements (Cd2+, Zn2+): applications to complex aqueous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis12gtLY%3D&md5=06b1e1af80875ff376ebd1ffdafa1207CAS |

[21]  D. H. Nies, Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 1999, 51, 730.
Microbial heavy-metal resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXks1OhtLY%3D&md5=da0519497814623c311004b66bcffda1CAS |

[22]  T. von Rozycki, M. H. Saier, D. H. Nies, Genomic analyses of transport proteins in Ralstonia metallidurans. Comp. Funct. Genomics 2005, 6, 17.
Genomic analyses of transport proteins in Ralstonia metallidurans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVCqu7s%3D&md5=98911d3b9d9bd7f13fe28f1f61209425CAS |

[23]  V. I. Slaveykova, K. Dedieu, N. Parthasarathy, R. Hajdu, Effect of competing ions and complexing organic substances on the cadmium uptake by the soil bacterium Sinorhizobium meliloti. Environ. Toxicol. Chem. 2009, 28, 741.
Effect of competing ions and complexing organic substances on the cadmium uptake by the soil bacterium Sinorhizobium meliloti.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFaisb0%3D&md5=5622c7ff1ce14cc281529401a66af0dbCAS |

[24]  V. Guiné, L. Spadini, G. Sarret, M. Muris, C. Delolme, J.-P. Gaudet, J. M. Martins, Zinc sorption to three Gram-negative bacteria: combined titration, modeling, and EXAFS study. Environ. Sci. Technol. 2006, 40, 1806.
Zinc sorption to three Gram-negative bacteria: combined titration, modeling, and EXAFS study.Crossref | GoogleScholarGoogle Scholar |

[25]  C. J. Daughney, J. B. Fein, The effect of ionic strength on the adsorption of H+, Cd2+, Pb2+, and Cu2+ by Bacillus subtilis and Bacillus licheniformis: a surface complexation model. J. Colloid Interface Sci. 1998, 198, 53.
The effect of ionic strength on the adsorption of H+, Cd2+, Pb2+, and Cu2+ by Bacillus subtilis and Bacillus licheniformis: a surface complexation model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsVOqsrw%3D&md5=52f5ca7d1411763ca766ece9967e9816CAS |

[26]  M. F. Benedetti, W. H. Van Riemsdijk, L. K. Koopal, Humic substances considered as a heterogeneous Donnan gel phase. Environ. Sci. Technol. 1996, 30, 1805.
Humic substances considered as a heterogeneous Donnan gel phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFans7Y%3D&md5=5fdac640b69a6dc2c3ed1950879b93f1CAS |

[27]  J. B. Fein, J. F. Boily, K. Guclu, E. Kaulbach, Experimental study of humic acid adsorption onto bacteria and Al-oxide mineral surfaces. Chem. Geol. 1999, 162, 33.
Experimental study of humic acid adsorption onto bacteria and Al-oxide mineral surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvVaqtr4%3D&md5=467d6453224db235f8aed72e2a12d497CAS |

[28]  P. G. Wightman, J. B. Fein, Ternary interactions in a humic acid–Cd–bacteria system. Chem. Geol. 2001, 180, 55.
Ternary interactions in a humic acid–Cd–bacteria system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvVens70%3D&md5=d09b58a6bb3492f1283c516fcc2dcee2CAS |

[29]  M. Esparza-Soto, P. Westerhoff, Biosorption of humic and fulvic acids to live activated sludge biomass. Water Res. 2003, 37, 2301.
Biosorption of humic and fulvic acids to live activated sludge biomass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1entrw%3D&md5=ddc2e74807d9f2507e583d0e8bfd0a9bCAS |

[30]  D. Borrok, K. Aumend, J. B. Fein, Significance of ternary bacteria-metal-natural organic matter complexes determined through experimentation and chemical equilibrium modelling. Chem. Geol. 2007, 238, 44.
Significance of ternary bacteria-metal-natural organic matter complexes determined through experimentation and chemical equilibrium modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFSiu7g%3D&md5=4968c8ee0e20bc8afb67d30da92ddb4bCAS |

[31]  J. D. Ritchie, E. M. Perdue, Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim. Cosmochim. Acta 2003, 67, 85.
Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsV2ktLY%3D&md5=048bba938522b3e40fde35d2e5256a22CAS |

[32]  Y. Ge, S. Sauve, W. H. Hendershot, Equilibrium speciation of cadmium, copper, and lead in soil solutions. Commun. Soil. Sci. Plan. 2005, 36, 1537.
Equilibrium speciation of cadmium, copper, and lead in soil solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlWit7w%3D&md5=f298344c364f8468480a492312e9a06aCAS |

[33]  V. Guiné, J. M. F. Martins, B. Causse, A. Durand, J.-P. Gaudet, L. Spadini, Effect of cultivation and experimental conditions on the surface reactivity of the metal-resistant bacteria Cupriavidus metallidurans CH34 to protons, cadmium and zinc. Chem. Geol. 2007, 236, 266.
Effect of cultivation and experimental conditions on the surface reactivity of the metal-resistant bacteria Cupriavidus metallidurans CH34 to protons, cadmium and zinc.Crossref | GoogleScholarGoogle Scholar |

[34]  A. C. C. Plette, M. F. Benedetti, W. H. Van Riemsdijk, Competitive binding of protons, calcium, cadmium, and zinc to isolated cell walls of a Gram-positive soil bacterium. Environ. Sci. Technol. 1996, 30, 1902.
Competitive binding of protons, calcium, cadmium, and zinc to isolated cell walls of a Gram-positive soil bacterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFansL0%3D&md5=59a3fb9643fcbe55045ff97dbe0496e6CAS |

[35]  A. C. C. Plette, M. M. Nederlof, E. J. M. Temminghoff, W. H. Van Riemsdijk, Bioavailability of heavy metals in terrestrial and aquatic systems: a quantitative approach. Environ. Toxicol. Chem. 1999, 18, 1882.
Bioavailability of heavy metals in terrestrial and aquatic systems: a quantitative approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1Sru7g%3D&md5=d00d6db35085bc68b6fa0519b77c8985CAS |

[36]  J. M. Kleijin, H. P. Van Leeuwen, Electrostatic and electrodynamic properties of biological interphases, in Physical chemistry of biological interphases (Eds A. Baszkin, W. Norde) 2000, pp. 49–84 (Marcel Dekker: New York).

[37]  K. A. Krukenberg, D. R. Southworth, T. O. Street, D. A. Agard, pH-dependent conformational changes in bacterial Hsp90 reveal a Grp94-like conformation at pH 6 that is highly active in suppression of citrate synthase aggregation. J. Mol. Biol. 2009, 390, 278.
pH-dependent conformational changes in bacterial Hsp90 reveal a Grp94-like conformation at pH 6 that is highly active in suppression of citrate synthase aggregation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1KisbY%3D&md5=a9adbcafd8160ed579fa28a90de40671CAS |

[38]  L. François, C. Fortin, P. G. C. Campbell, pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: implications for an algal BLM. Aquat. Toxicol. 2007, 84, 123.
pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: implications for an algal BLM.Crossref | GoogleScholarGoogle Scholar |

[39]  J. B. Fein, C. J. Daughney, N. Yee, T. A. Davis, A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim. Cosmochim. Acta 1997, 61, 3319.
A chemical equilibrium model for metal adsorption onto bacterial surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1Kmsbw%3D&md5=1ab20dcd27667a388042b4429ad0dffbCAS |

[40]  A. Smiejan, K. J. Wilkinson, C. Rossier, Cd bioaccumulation by a freshwater bacterium, Rhodospirillum rubrum. Environ. Sci. Technol. 2003, 37, 701.
Cd bioaccumulation by a freshwater bacterium, Rhodospirillum rubrum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlKm&md5=a4abb3c977a11ac9d4a11bd05ac8622cCAS |

[41]  R. A. Laddaga, S. Silver, Cadmium uptake in Escherichia coli K-12. J. Bacteriol. 1985, 162, 1100.
| 1:CAS:528:DyaL2MXktF2lsLw%3D&md5=a9cafb313623bb8fdc1b7e11b273c155CAS |

[42]  P. R. Puranik, K. M. Paknikar, Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: characterization studies. Biotechnol. Prog. 1999, 15, 228.
Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: characterization studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhslekur8%3D&md5=1df098e613586fd65ec7f8e34e2988e4CAS |

[43]  V. Knoop, M. Groth-Malonek, M. Gebert, K. Eifler, K. Weyand, Transport of magnesium and other divalent cations: evolution of the 2-TM-GxN proteins in the MIT superfamily. Mol. Gen. Genom. 2005, 274, 205.
Transport of magnesium and other divalent cations: evolution of the 2-TM-GxN proteins in the MIT superfamily.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFartL7K&md5=e5e169f75a0d09ee7d51fced3d662e82CAS |

[44]  Q. R. Zeng, S. Sauve, H. E. Allen, W. H. Hendershot, Recycling EDTA solutions used to remediate metal-polluted soils. Environ. Pollut. 2005, 133, 225.
Recycling EDTA solutions used to remediate metal-polluted soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1Wiu78%3D&md5=5f7d4d790f6e2f07edabdac6ccd6e510CAS |