Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Assessment of biogenic secondary organic aerosol in the Himalayas

Elizabeth A. Stone A C , Tony T. Nguyen A , Bidya Banmali Pradhan B and Pradeep Man Dangol B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Iowa, Iowa City, IA 52246, USA.

B International Centre for Integrated Mountain Development, Kathmandu, Nepal.

C Corresponding author. Email: betsy-stone@uiowa.edu

Environmental Chemistry 9(3) 263-272 https://doi.org/10.1071/EN12002
Submitted: 3 January 2012  Accepted: 10 April 2012   Published: 26 June 2012

Environmental context. Secondary organic aerosols derived from biogenic gases are ubiquitous in the atmosphere. We found that biogenic secondary organic aerosol in Nepal accounted for 6 to 23 % of organic carbon. Primary and secondary biogenic sources combined accounted for approximately half of the observed organic aerosol, suggesting that additional aerosol sources or precursors are significant in this region of the Himalayas.

Abstract. Biogenic contributions to secondary organic aerosol (SOA) in the South-East Asian regional haze were assessed by measurement of isoprene, monoterpene and sesquiterpene photooxidation products in fine particles (PM2.5) at a mid-latitude site in the Himalayas. Organic species were measured in solvent extracts of filter samples using gas chromatography–mass spectrometry (GCMS) and chemical derivatisation; this analysis was used to quantify molecular markers for primary aerosol sources – including motor vehicles, biomass burning and detritus – and SOA tracers. Authentic standards of most SOA products were not commercially available at the time of this study, so surrogate standards were used for semiquantitation. Using an empirical approach to uncertainty estimation based on homologous series of atmospherically relevant model compounds, analytical uncertainties ranged from 32 % for SOA tracers with structurally similar surrogates to more than 100 % for tracers with a poorly matched surrogate. Biogenic SOA contributions to PM2.5 organic carbon content in the 2005 monsoon and post-monsoon season ranged from 2–19 % for isoprene, 1–5 % for monoterpenes and 1–4 % for sesquiterpenes. High concentrations of isoprene derivatives in aerosol, particularly in the late summer months, point to biogenic SOA as a significant source of organic carbon in the Himalayan region.


References

[1]  K. L. Denman, G. Brasseur, A. Chidthaisong, P. Ciais, P. M. Cox, R. E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S. Ramachandran, P. L. da Silva Dias, S. C. Wofsey, X. Zhang, Chapter 7: Couplings Between Changes in the Climate System and Biogeochemistry, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller) 2007, pp. 555–565 (Cambridge University Press: Cambridge, UK, and New York).

[2]  P. Saxena, L. M. Hildemann, Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds J. Atmos. Chem. 1996, 24, 57.
Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compoundsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjtlymurw%3D&md5=4eb539c4a51a781a9688c8349d4e46b1CAS |

[3]  S. N. Pandis, R. H. Harley, G. R. Cass, J. H. Seinfeld, Secondary organic aerosol formation and transport. Atmos. Environ. 1992, 26A, 2269.
| 1:CAS:528:DyaK38XmtFyrsbY%3D&md5=a9b1d6fbec4438fc0d9e2aff43381dd1CAS |

[4]  T. Hoffmann, J. R. Odum, F. Bowman, D. Collins, D. Klockow, R. C. Flagan, J. H. Seinfeld, Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J. Atmos. Chem. 1997, 26, 189.
Formation of organic aerosols from the oxidation of biogenic hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvVKmsLg%3D&md5=205688de84956f44aeb070d75650cee9CAS |

[5]  E. O. Edney, T. E. Kleindienst, M. Jaoui, M. Lewandowski, J. H. Offenberg, W. Wang, M. Claeys, Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOX/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States. Atmos. Environ. 2005, 39, 5281.
Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOX/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptVWmur8%3D&md5=f73fb3b7f0323e135d831e56584b671fCAS |

[6]  R. Atkinson, J. Arey, Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos. Environ. 2003, 37, 197.
Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review.Crossref | GoogleScholarGoogle Scholar |

[7]  J. Kesselmeier, M. Staudt, Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J. Atmos. Chem. 1999, 33, 23.
Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis12nsbY%3D&md5=50ee1a2ee23047b453abda211b28e0e3CAS |

[8]  A. Guenther, C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, P. Zimmerman, A global-model of natural volatile organic-compound emissions. J. Geophys. Res. – Atmos. 1995, 100, 8873.
A global-model of natural volatile organic-compound emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvFKrsb0%3D&md5=54b43e37416d1cbc76e41d5b8bab16e1CAS |

[9]  M. Jaoui, M. Lewandowski, T. E. Kleindienst, J. H. Offenberg, E. O. Edney, β-caryophyllinic acid: an atmospheric tracer for β-caryophyllene secondary organic aerosol. Geophys. Res. Lett. 2007, 34, L05816.
β-caryophyllinic acid: an atmospheric tracer for β-caryophyllene secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[10]  M. Jaoui, T. E. Kleindienst, M. Lewandowski, J. H. Offenberg, E. O. Edney, Identification and quantification of aerosol polar oxygenated compounds bearing carboxylic or hydroxyl groups. 2. Organic tracer compounds from monoterpenes. Environ. Sci. Technol. 2005, 39, 5661.
Identification and quantification of aerosol polar oxygenated compounds bearing carboxylic or hydroxyl groups. 2. Organic tracer compounds from monoterpenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFKht7w%3D&md5=baf04598acc013a93f59dfc9cbff3773CAS |

[11]  T. E. Kleindienst, T. S. Conver, C. D. McIver, E. O. Edney, Determination of secondary organic aerosol products from the photooxidation of toluene and their implications in ambient PM2.5. J. Atmos. Chem. 2004, 47, 79.
Determination of secondary organic aerosol products from the photooxidation of toluene and their implications in ambient PM2.5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVSjsQ%3D%3D&md5=8f7720bc8f20a0c7c6d91f9cea9e672aCAS |

[12]  R. Szmigielski, J. D. Surratt, Y. Gomez-Gonzalez, P. Van der Veken, I. Kourtchev, R. Vermeylen, F. Blockhuys, M. Jaoui, T. E. Kleindienst, M. Lewandowski, J. H. Offenberg, E. O. Edney, J. H. Seinfeld, W. Maenhaut, M. Claeys, 3-methyl-1,2,3-butanetricarboxylic acid: an atmospheric tracer for terpene secondary organic aerosol. Geophys. Res. Lett. 2007, 34, L24811.
3-methyl-1,2,3-butanetricarboxylic acid: an atmospheric tracer for terpene secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[13]  T. E. Kleindienst, M. Jaoui, M. Lewandowski, J. H. Offenberg, C. W. Lewis, P. V. Bhave, E. O. Edney, Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location. Atmos. Environ. 2007, 41, 8288.
Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWntrjJ&md5=a7688886297d5b83272ab4988b44809dCAS |

[14]  J. D. Surratt, J. H. Kroll, T. E. Kleindienst, E. O. Edney, M. Claeys, A. Sorooshian, N. L. Ng, J. H. Offenberg, M. Lewandowski, M. Jaoui, R. C. Flagan, J. H. Seinfeld, Evidence for organosulfates in secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 517.
Evidence for organosulfates in secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OmsLzM&md5=3ba1496dcab5f18f744e84387c36ab24CAS |

[15]  J. J. Schauer, W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos. Environ. 1996, 30, 3837.
Source apportionment of airborne particulate matter using organic compounds as tracers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsFOht7w%3D&md5=e146fa24342c151195fd8011300d6596CAS |

[16]  M. Lewandowski, M. Jaoui, J. H. Offenberg, E. O. Edney, R. J. Sheesley, J. J. Schauer, Primary and secondary contributions to ambient PM in the Midwestern United States. Environ. Sci. Technol. 2008, 42, 3303.
Primary and secondary contributions to ambient PM in the Midwestern United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVarsLg%3D&md5=44ef508ab1f601c14dc620e0fdf4eb1fCAS |

[17]  E. A. Stone, C. J. Hedman, J. B. Zhou, M. Mieritz, J. J. Schauer, Insights into the nature of secondary organic aerosol in Mexico City during the MILAGRO experiment 2006. Atmos. Environ. 2010, 44, 312.
Insights into the nature of secondary organic aerosol in Mexico City during the MILAGRO experiment 2006.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVWrsw%3D%3D&md5=cedb2c34cdc8d1031e02e130e4554e7dCAS |

[18]  E. A. Stone, J. B. Zhou, D. C. Snyder, A. P. Rutter, M. Mieritz, J. J. Schauer, A comparison of summertime secondary organic aerosol source contributions at contrasting urban locations. Environ. Sci. Technol. 2009, 43, 3448.
A comparison of summertime secondary organic aerosol source contributions at contrasting urban locations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslOltLg%3D&md5=1039a410778a157f14fbd7bd2394eedbCAS |

[19]  D. Hu, Q. Bian, T. W. Y. Li, A. K. H. Lau, J. Z. Yu, Contributions of isoprene, monoterpenes, β-caryophyllene, and toluene to secondary organic aerosols in Hong Kong during the summer of 2006. J. Geophys. Res. – Atmos. 2008, 113, D22206.
Contributions of isoprene, monoterpenes, β-caryophyllene, and toluene to secondary organic aerosols in Hong Kong during the summer of 2006.Crossref | GoogleScholarGoogle Scholar |

[20]  X. A. Ding, X. M. Wang, M. Zheng, The influence of temperature and aerosol acidity on biogenic secondary organic aerosol tracers: observations at a rural site in the central Pearl River Delta region, South China. Atmos. Environ. 2011, 45, 1303.
The influence of temperature and aerosol acidity on biogenic secondary organic aerosol tracers: observations at a rural site in the central Pearl River Delta region, South China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVWrsLk%3D&md5=e8a15bf0e6bfbe75742e78ccb1d5138bCAS |

[21]  A. L. Clements, J. H. Seinfeld, Detection and quantification of 2-methyltetrols in ambient aerosol in the southeastern United States. Atmos. Environ. 2007, 41, 1825.
Detection and quantification of 2-methyltetrols in ambient aerosol in the southeastern United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslCnsw%3D%3D&md5=d296ae9d862443d17042f41778bfbb3fCAS |

[22]  I. Kourtchev, S. Hellebust, J. M. Bell, I. P. O'Connor, R. M. Healy, A. Allanic, D. Healy, J. C. Wenger, J. R. Sodeau, The use of polar organic compounds to estimate the contribution of domestic solid fuel combustion and biogenic sources to ambient levels of organic carbon and PM2.5 in Cork Harbour, Ireland. Sci. Total Environ. 2011, 409, 2143.
The use of polar organic compounds to estimate the contribution of domestic solid fuel combustion and biogenic sources to ambient levels of organic carbon and PM2.5 in Cork Harbour, Ireland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFWisbg%3D&md5=b514ff711be424e141ac058170ddf48fCAS |

[23]  I. Kourtchev, T. Ruuskanen, W. Maenhaut, M. Kulmala, M. Claeys, Observation of 2-methyltetrols and related photo-oxidation products of isoprene in boreal forest aerosols from Hyytiala, Finland. Atmos. Chem. Phys. 2005, 5, 2761.
Observation of 2-methyltetrols and related photo-oxidation products of isoprene in boreal forest aerosols from Hyytiala, Finland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Kgsr%2FK&md5=82155110c0a3003e228a87557cb72337CAS |

[24]  M. Claeys, I. Kourtchev, V. Pashynska, G. Vas, R. Vermeylen, W. Wang, J. Cafmeyer, X. Chi, P. Artaxo, M. O. Andreae, W. Maenhaut, Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondonia, Brazil: sources and source processes, time series, diel variations and size distributions. Atmos. Chem. Phys. 2010, 10, 9319.
Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondonia, Brazil: sources and source processes, time series, diel variations and size distributions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ait7vK&md5=a241fdee8f6bbe3fa6086f99c5b13d27CAS |

[25]  X. Xia, P. K. Hopke, Seasonal variation of 2-methyltetrols in ambient air samples. Environ. Sci. Technol. 2006, 40, 6934.
Seasonal variation of 2-methyltetrols in ambient air samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2qs7%2FO&md5=2bad1f1f9ccc241f03a982d7c9c5b807CAS |

[26]  V. Ramanathan, F. Li, M. V. Ramana, P. S. Praveen, D. Kim, C. E. Corrigan, H. Nguyen, E. A. Stone, J. J. Schauer, G. R. Carmichael, B. Adhikary, S. C. Yoon, Atmospheric brown clouds: hemispherical and regional variations in long-range transport, absorption, and radiative forcing. J. Geophys. Res. – Atmos. 2007, 112, D22S21.
Atmospheric brown clouds: hemispherical and regional variations in long-range transport, absorption, and radiative forcing.Crossref | GoogleScholarGoogle Scholar |

[27]  E. A. Stone, J. J. Schauer, B. B. Pradhan, P. M. Dangol, G. Habib, C. Venkataraman, V. Ramanathan, Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas. J. Geophys. Res. – Atmos. 2010, 115, D06301.
Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas.Crossref | GoogleScholarGoogle Scholar |

[28]  P. M. Fine, B. Chakrabarti, M. Krudysz, J. J. Schauer, C. Sioutas, Diurnal variations of individual organic compound constituents of ultrafine and accumulation mode particulate matter in the Los Angeles basin. Environ. Sci. Technol. 2004, 38, 1296.
Diurnal variations of individual organic compound constituents of ultrafine and accumulation mode particulate matter in the Los Angeles basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFGktw%3D%3D&md5=99bd1b31aa4a281b887ae551e398f9d3CAS |

[29]  R. B. Bhuju, P. R. Shakya, T. B. Basnet, S. Srhrestha, Nepal Biodiversity Resource Book 2007 (International Center for Integrated Mountain Development: Nepal).

[30]  J. J. Schauer, B. T. Mader, J. T. Deminter, G. Heidemann, M. S. Bae, J. H. Seinfeld, R. C. Flagan, R. A. Cary, D. Smith, B. J. Huebert, T. Bertram, S. Howell, J. T. Kline, P. Quinn, T. Bates, B. Turpin, H. J. Lim, J. Z. Yu, H. Yang, M. D. Keywood, ACE-Asia intercomparison of a thermal-optical method for the determination of particle-phase organic and elemental carbon. Environ. Sci. Technol. 2003, 37, 993.
ACE-Asia intercomparison of a thermal-optical method for the determination of particle-phase organic and elemental carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlOitQ%3D%3D&md5=00eba0b656be1c664be637641bfe592aCAS |

[31]  C. G. Nolte, J. J. Schauer, G. R. Cass, B. R. T. Simoneit, Trimethylsilyl derivatives of organic compounds in source samples and in atmospheric fine particulate matter. Environ. Sci. Technol. 2002, 36, 4273.
Trimethylsilyl derivatives of organic compounds in source samples and in atmospheric fine particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntVahu7c%3D&md5=479375e5ab06728a7015584c3bccf427CAS |

[32]  M. Claeys, B. Graham, G. Vas, W. Wang, R. Vermeylen, V. Pashynska, J. Cafmeyer, P. Guyon, M. O. Andreae, P. Artaxo, W. Maenhaut, Formation of secondary organic aerosols through photooxidation of isoprene. Science 2004, 303, 1173.
Formation of secondary organic aerosols through photooxidation of isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVWgtb4%3D&md5=eef442b73dfc7608ee1529dcde8b7e37CAS |

[33]  B. J. Turpin, H. J. Lim, Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol. 2001, 35, 602.
Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVarsb8%3D&md5=9a0bf57d3f21acd93e01f40bf5e0f013CAS |

[34]  B. Adhikary, G. R. Carmichael, S. Kulkarni, C. Wei, Y. Tang, A. D'Allura, M. Mena-Carrasco, D. G. Streets, Q. Zhang, R. B. Pierce, J. A. Al-Saadi, L. K. Emmons, G. G. Pfister, M. A. Avery, J. D. Barrick, D. R. Blake, W. H. Brune, R. C. Cohen, J. E. Dibb, A. Fried, B. G. Heikes, L. G. Huey, D. W. O'Sullivan, G. W. Sachse, R. E. Shetter, H. B. Singh, T. L. Campos, C. A. Cantrell, F. M. Flocke, E. J. Dunlea, J. L. Jimenez, A. J. Weinheimer, J. D. Crounse, P. O. Wennberg, J. J. Schauer, E. A. Stone, D. A. Jaffe, D. R. Reidmiller, A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign. Atmos. Chem. Phys. 2010, 10, 2091.
A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslOqt78%3D&md5=d7508aee5930f1216786179e6c7c8075CAS |

[35]  A. Chatterjee, A. Adak, A. K. Singh, M. K. Srivastava, S. K. Ghosh, S. Tiwari, P. C. S. Devara, S. Raha, Aerosol chemistry over a high altitude station at northeastern Himalayas, India. PLoS ONE 2010, 5, e11122.
Aerosol chemistry over a high altitude station at northeastern Himalayas, India.Crossref | GoogleScholarGoogle Scholar |

[36]  B. Adhikary, G. R. Carmichael, Y. Tang, L. R. Leung, Y. Qian, J. J. Schauer, E. A. Stone, V. Ramanathan, M. V. Ramana, Characterization of the seasonal cycle of south Asian aerosols: a regional-scale modeling analysis. J. Geophys. Res. – Atmos. 2007, 112, D22S22.
Characterization of the seasonal cycle of south Asian aerosols: a regional-scale modeling analysis.Crossref | GoogleScholarGoogle Scholar |

[37]  P. Bonasoni, P. Laj, F. Angelini, J. Arduini, U. Bonafe, F. Calzolari, P. Cristofanelli, S. Decesari, M. C. Facchini, S. Fuzzi, G. P. Gobbi, M. Maione, A. Marinoni, A. Petzold, F. Roccato, J. C. Roger, K. Sellegri, M. Sprenger, H. Venzac, G. P. Verza, P. Villani, E. Vuillermoz, The ABC-Pyramid Atmospheric Research Observatory in Himalaya for aerosol, ozone and halocarbon measurements. Sci. Total Environ. 2008, 391, 252.
The ABC-Pyramid Atmospheric Research Observatory in Himalaya for aerosol, ozone and halocarbon measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVKjsQ%3D%3D&md5=de2fdd6da29f5127d7307645e9b7caa7CAS |

[38]  B. R. T. Simoneit, J. J. Schauer, C. G. Nolte, D. R. Oros, V. O. Elias, M. P. Fraser, W. F. Rogge, G. R. Cass, Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos. Environ. 1999, 33, 173.
Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVagtw%3D%3D&md5=b0c46e6c032e9e385e6c431afac2b010CAS |

[39]  C. Venkataraman, G. Habib, A. Eiguren-Fernandez, A. H. Miguel, S. K. Friedlander, Residential biofuels in south Asia: carbonaceous aerosol emissions and climate impacts. Science 2005, 307, 1454.
Residential biofuels in south Asia: carbonaceous aerosol emissions and climate impacts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslKrtro%3D&md5=dabda17859a4f77d6b5b5f9885e18257CAS |

[40]  S. Lee, K. Baumann, J. J. Schauer, R. J. Sheesley, L. P. Naeher, S. Meinardi, D. R. Blake, E. S. Edgerton, A. G. Russell, M. Clements, Gaseous and particulate emissions from prescribed burning in Georgia. Environ. Sci. Technol. 2005, 39, 9049.
Gaseous and particulate emissions from prescribed burning in Georgia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCitLfL&md5=cdd77667a587031e6e5d1103a43f495bCAS |

[41]  Y. X. Zhang, M. Shao, Y. H. Zhang, L. M. Zeng, L. Y. He, B. Zhu, Y. J. Wei, X. L. Zhu, Source profiles of particulate organic matters emitted from cereal straw burnings. J. Environ. Sci. 2007, 19, 167.
Source profiles of particulate organic matters emitted from cereal straw burnings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1SmtL8%3D&md5=88789b77e255674cf54227108cb83c6fCAS |

[42]  D. R. Oros, B. R. T. Simoneit, Identification and emission rates of molecular tracers in coal smoke particulate matter. Fuel 2000, 79, 515.
Identification and emission rates of molecular tracers in coal smoke particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVSntLY%3D&md5=cf3bc9df363cf6804f434b5990eee99cCAS |

[43]  Y. X. Zhang, J. J. Schauer, Y. H. Zhang, L. M. Zeng, Y. J. Wei, Y. Liu, M. Shao, Characteristics of particulate carbon emissions from real-world Chinese coal combustion. Environ. Sci. Technol. 2008, 42, 5068.
Characteristics of particulate carbon emissions from real-world Chinese coal combustion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVGqtb4%3D&md5=fb7067e33cf6e1177b11bd98a2e75f37CAS |

[44]  G. C. Lough, C. C. Christenson, J. J. Schauer, J. Tortorelli, E. Bean, D. Lawson, N. N. Clark, P. A. Gabele, Development of molecular marker source profiles for emissions from on-road gasoline and diesel vehicle fleets. J. Air Waste Manage. Assoc. 2007, 57, 1190.
Development of molecular marker source profiles for emissions from on-road gasoline and diesel vehicle fleets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Gisb3I&md5=ee605ba59b6f209d68a44f744f642406CAS |

[45]  B. R. T. Simoneit, A review of current applications of mass spectrometry for biomarker/molecular tracer elucidations. Mass Spectrom. Rev. 2005, 24, 719.
A review of current applications of mass spectrometry for biomarker/molecular tracer elucidations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVahs7fO&md5=11a76c1fd7aa94172cfc973a9b098371CAS |

[46]  B. R. T. Simoneit, M. Kobayashi, M. Mochida, K. Kawamura, M. Lee, H. J. Lim, B. J. Turpin, Y. Komazaki, Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign. J. Geophys. Res. – Atmos. 2004, 109, D19S10.
Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign.Crossref | GoogleScholarGoogle Scholar |

[47]  T. D. Sharkey, A. E. Wiberley, A. R. Donohue, Isoprene emission from plants: why and how. Ann. Bot. 2008, 101, 5.
| 1:CAS:528:DC%2BD1cXitlansrg%3D&md5=aff2d286b8a47fa68873b66d727f4e32CAS |

[48]  P. Q. Fu, K. Kawamura, J. Chen, L. A. Barrie, Isoprene, monoterpene, and sesquiterpene oxidation products in the high arctic aerosols during late winter to early summer. Environ. Sci. Technol. 2009, 43, 4022.
Isoprene, monoterpene, and sesquiterpene oxidation products in the high arctic aerosols during late winter to early summer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlKltbo%3D&md5=d0e9e31fcfbfeef79b89aa585792f204CAS |

[49]  N. J. D. González, A. K. Borg-Karlson, J. P. Redeby, B. Nozière, R. Krejci, Y. X. Pei, J. Dommen, A. S. H. Prévôt, New method for resolving the enantiomeric composition of 2-methyltetrols in atmospheric organic aerosols. J. Chromatogr. A 2011, 1218, 9288.
New method for resolving the enantiomeric composition of 2-methyltetrols in atmospheric organic aerosols.Crossref | GoogleScholarGoogle Scholar |

[50]  M. Claeys, R. Szmigielski, I. Kourtchev, P. Van der Veken, R. Vermeylen, W. Maenhaut, M. Jaoui, T. E. Kleindienst, M. Lewandowski, J. H. Offenberg, E. O. Edney, Hydroxydicarboxylic acids: markers for secondary organic aerosol from the photooxidation of α-pinene. Environ. Sci. Technol. 2007, 41, 1628.
Hydroxydicarboxylic acids: markers for secondary organic aerosol from the photooxidation of α-pinene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1OltA%3D%3D&md5=41f6c49e1ffc8e2be4811bb4c6525272CAS |

[51]  Y. B. Lim, P. J. Ziemann, Products and mechanism of secondary organic aerosol formation from reactions of n-alkanes with OH radicals in the presence of NOx. Environ. Sci. Technol. 2005, 39, 9229.
Products and mechanism of secondary organic aerosol formation from reactions of n-alkanes with OH radicals in the presence of NOx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKltr3O&md5=0806f37049ca7d6986fc61ad12ee964fCAS |

[52]  T. E. Kleindienst, E. O. Edney, M. Lewandowski, J. H. Offenberg, M. Jaoui, Secondary organic carbon and aerosol yields from the irradiations of isoprene and α-pinene in the presence of NOx and SO2. Environ. Sci. Technol. 2006, 40, 3807.
Secondary organic carbon and aerosol yields from the irradiations of isoprene and α-pinene in the presence of NOx and SO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksValt78%3D&md5=79396c4e817e6379f543ae137cd87b4aCAS |

[53]  M. Jaoui, S. Leungsakul, R. M. Kamens, Gas and particle products distribution from the reaction of β-caryophyllene with ozone. J. Atmos. Chem. 2003, 45, 261.
Gas and particle products distribution from the reaction of β-caryophyllene with ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Cnt7w%3D&md5=7e6442b3cc44524dd926f5e6c2b28a75CAS |

[54]  K. M. Shakya, L. D. Ziemba, R. J. Griffin, Characteristics and sources of carbonaceous, ionic, and isotopic species of wintertime atmospheric aerosols in Kathmandu Valley, Nepal. Aerosol Air. Qual. Res. 2010, 10, 219.
| 1:CAS:528:DC%2BC3cXpvFKltbc%3D&md5=909671cd1cbad474d982fab6b6209ef3CAS |

[55]  X. Ding, X.-M. Wang, B. Gao, X.-X. Fu, Q.-F. He, X.-Y. Zhao, J.-Z. Yu, M. Zheng, Tracer-based estimation of secondary organic carbon in the Pearl River Delta, south China. J. Geophys. Res. – Atmos. 2012, 117, D05313.
Tracer-based estimation of secondary organic carbon in the Pearl River Delta, south China.Crossref | GoogleScholarGoogle Scholar |