Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Decreased marine dimethyl sulfide production under elevated CO2 levels in mesocosm and in vitro studies

Valia Avgoustidi A B C , Philip D. Nightingale B , Ian Joint B , Michael Steinke D , Suzanne M. Turner A , Frances E. Hopkins B and Peter S. Liss A E
+ Author Affiliations
- Author Affiliations

A School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.

B Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK.

C Hellenic Centre for Marine Research, Institute of Oceanography, PO Box 712 Anavissos, 19013, Greece.

D Department of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK.

E Corresponding author. Email: p.liss@uea.ac.uk

Environmental Chemistry 9(4) 399-404 https://doi.org/10.1071/EN11125
Submitted: 6 October 2011  Accepted: 8 June 2012   Published: 20 August 2012

Environmental context. As atmospheric CO2 levels rise due to human activities, more of the gas dissolves in the oceans, increasing their acidity. The effect of these seawater changes on marine organisms is largely unknown. We examine the consequences of higher CO2 levels on the production by plankton of dimethyl sulfide, a climatically active gas. We find that higher CO2 levels leads to lower concentrations of dimethyl sulfide in the seawater, which has potentially important implications for the future climate.

Abstract. The oceans have absorbed approximately half of the CO2 produced by human activities and it is inevitable that surface seawaters will become increasingly acidified. The effect of lower pH on marine organisms and ocean–atmosphere exchanges is largely unknown but organisms with CaCO3 structural components are likely to be particularly affected. Because calcifying phytoplankton are significant producers of dimethyl sulfide (DMS), it is vital to understand how lower seawater pH may affect DMS production and emission to the atmosphere. Here we show, by mesocosm (Raunefjorden, Norway, April–May 2003) and in vitro studies, that the net production of DMS and its cellular precursor dimethylsulfoniopropionate (DMSP) is approximately halved in microbial communities subjected to doubled CO2 levels. Our findings provide evidence that the amount of DMS entering the atmosphere could decrease in the future. Because atmospheric oxidation of DMS can lead to climate cooling by increasing cloud albedo, a consequence of reduced DMS emissions from a lower pH ocean would be an enhancement in global warming.


References

[1]  M. Chin, D. J. Jacob, Anthropogenic and natural contributions to tropospheric sulfate: a global model analysis. J. Geophys. Res. 1996, 101, 18691.
Anthropogenic and natural contributions to tropospheric sulfate: a global model analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlslKltLg%3D&md5=0a14ea6accba34d873e65af322d7dd8dCAS |

[2]  M. O. Andreae, Ocean–atmosphere interactions in the global biogeochemical sulfur cycle. Mar. Chem. 1990, 30, 1.
Ocean–atmosphere interactions in the global biogeochemical sulfur cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlslOksbw%3D&md5=bff6786adf32819eb045344b6b929d1bCAS |

[3]  M. D. Keller, W. K. Bellows, R. R. L. Gillard, Dimethyl sulfide production in marine phytoplankton, in Biogenic sulfur in the environment (Eds E. S. Saltzman, W. J. Cooper) 1989, pp. 167–182 (American Chemical Society: Washington, DC).

[4]  M. Steinke, G. V. Wolfe, G. O. Kirst, Partial characterisation of dimethylsulfoniopropionate (DMSP) lyase isozymes in 6 strains of Emiliania huxleyi. Mar. Ecol. Prog. Ser. 1998, 175, 215.
Partial characterisation of dimethylsulfoniopropionate (DMSP) lyase isozymes in 6 strains of Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlyiuw%3D%3D&md5=e65f02f5aebe226c5acfd6636f73d8a5CAS |

[5]  P. S. Liss, A. D. Hatton, G. Malin, P. D. Nightingale, S. M. Turner, Marine sulphur emissions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1997, 352, 159.
Marine sulphur emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis12hsLk%3D&md5=f413407ab8e3c23aa4e4889471859c85CAS |

[6]  R. P. Kiene, L. J. Linn, J. A. Bruton, New and important roles for DMSP in marine microbial communities. J. Sea Res. 2000, 43, 209.
New and important roles for DMSP in marine microbial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Wrtbw%3D&md5=347015b4d5a59c6110108d1a93745f86CAS |

[7]  R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987, 326, 655.
Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVWgsb8%3D&md5=a6b63e2400e088f8bc66c8ce3840ac64CAS |

[8]  A. Engel, K. G. Schulz, U. Riebesell, R. Bellerby, B. Delille, M. Schartau, Effects of CO2 on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II). Biogeosciences 2008, 5, 509.
Effects of CO2 on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2iurjJ&md5=b7dc070bec8700d7f21c0d8b949e1291CAS |

[9]  V. Avgoustidi, Dimethyl Sulphide Production in a Double-CO2 World 2006, Ph.D. thesis, University of East Anglia, Norwich.

[10]  S. M. Turner, G. Malin, L. E. Badanger, C. Leck, Interlabortaoty calibration and sample analysis of dimethyl sulphide in water. Mar. Chem. 1990, 29, 47.
Interlabortaoty calibration and sample analysis of dimethyl sulphide in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktFWrsLg%3D&md5=52a1429feded916f7d7b2bf7857eac97CAS |

[11]  F. E. Hopkins, S. M. Turner, P. D. Nightingale, M. Steinke, D. Bakker, P. S. Liss, Ocean acidification and marine trace gas emissions. Proc. Natl. Acad. Sci. USA 2010, 107, 760.[Published online early 22 December 2009]
Ocean acidification and marine trace gas emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFCms7g%3D&md5=e8f6b46faecf2d5e44af0427fb370524CAS |

[12]  M. D. Keller, R. P. Kiene, P. A. Matrai, W. K. Bellows, Production of glycine betaine and dimethylsulfoniopropionate in marine phytoplankton, I. Batch cultures. Mar. Biol. 1999, 135, 237.
Production of glycine betaine and dimethylsulfoniopropionate in marine phytoplankton, I. Batch cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVCit7g%3D&md5=722869f535d4bde9ff420d9849ffc834CAS |

[13]  R. P. Kiene, T. S. Bates, Biological removal of dimethyl sulphide from sea-water. Nature 1990, 345, 702.
Biological removal of dimethyl sulphide from sea-water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltlyjur8%3D&md5=4bd4087dfefd39e7dc769d573f94bc3eCAS |

[14]  M. Allgaier, U. Riebesell, M. Vogt, R. Thyrhaug, H.-P. Grossart, Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study. Biogeosciences 2008, 5, 1007.
Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlahu7vJ&md5=7e2e6c253b97cb4493fad5a916367339CAS |

[15]  I. Joint, S. C. Doney, D. M. Karl, Will ocean acidification affect marine microbes? ISME 2010, 5, 1.[Published online early 10 June 2010]
Will ocean acidification affect marine microbes?Crossref | GoogleScholarGoogle Scholar |

[16]  J. Stefels, M. Steinke, S. Turner, G. Malin, S. Belviso, Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 2007, 83, 245.
Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlakt7s%3D&md5=ab086d61636f88cd8cdb0fa8645d6c55CAS |

[17]  J.-M. Kim, K. Lee, E. J. Yang, K. Shin, J. H. Noh, K.-T. Park, B. Hyun, H.-J. Jeong, J.-K. Kim, K. Y. Kim, M. Kim, H.-C. Kim, P.-G. Jang, M.-C. Jang, Enhanced production of oceanic dimethylsulfide resulting from CO2-induced grazing activity in a high CO2 world. Environ. Sci. Technol. 2010, 44, 8140.
Enhanced production of oceanic dimethylsulfide resulting from CO2-induced grazing activity in a high CO2 world.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1akt7rI&md5=3e4dc4468f39f9bb6ead2cbe1ddd9c12CAS |

[18]  K. Suffrian, P. Simonelli, J. C. Nejstgaard, S. Putzeys, Y. Carotenuto, A. N. Antia, Microzooplankton grazing and phytoplankton growth in marine mesocosms with increased CO2 levels. Biogeosciences 2008, 5, 1145.
Microzooplankton grazing and phytoplankton growth in marine mesocosms with increased CO2 levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlahu7jE&md5=40b9863ca9da758ea66a26f3294525f0CAS |

[19]  M. D. Iglesias-Rodriguez, P. R. Halloran, R. E. M. Rickaby, I. R. Hall, E. Colmenero-Hidalgo, J. R. Gittins, D. R. H. Green, T. Tyrrell, S. J. Gibbs, P. von Dassow, E. Rehm, E. V. Armbrust, K. P. Boessenkool, Phytoplankton calcification in a high-CO2 world. Science 2008, 320, 336.
Phytoplankton calcification in a high-CO2 world.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks1Ghsb4%3D&md5=9e754393202c0c21fe63e47febf282c0CAS |

[20]  O. W. Wingenter, K. B. Haase, M. Zeigler, D. R. Blake, F. S. Rowland, B. C. Sive, B. A. Paulino, R. Thyrhaug, A. Larsen, K. G. Schulz, M. Meyerhofer, U. Riebesell, Unexpected consequences of increasing CO2 and ocean acidity on marine production of DMS and CH2ClI: potential climate impacts. Geophys. Res. Lett. 2007, 34, L05710.
Unexpected consequences of increasing CO2 and ocean acidity on marine production of DMS and CH2ClI: potential climate impacts.Crossref | GoogleScholarGoogle Scholar |

[21]  M. Vogt, M. Steinke, S. Turner, A. Paulino, M. Meyerhofer, U. Riebesell, C. LeQuere, P. Liss, Dynamics of dimethylsulphoniopropionate and dimethylsulphide under different CO2 concentrations during a mesocosm experiment. Biogeosciences 2008, 5, 407.
Dynamics of dimethylsulphoniopropionate and dimethylsulphide under different CO2 concentrations during a mesocosm experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2iurvF&md5=ff26022d27f56bb6c05e0223d75f8aaeCAS |

[22]  P. A. Lee, J. R. Rudisill, A. R. Neeley, J. M. Maucher, D. A. Hutchins, Y. Feng, C. E. Hare, K. Leblanc, J. M. Rose, S. W. Wilhelm, J. M. Rowe, G. R. DiTullio, Effects of increased pCO2 and temperature on the North Atlantic spring bloom. III. Dimethylsulfoniopropionate. Mar. Ecol. Prog. Ser. 2009, 388, 41.
Effects of increased pCO2 and temperature on the North Atlantic spring bloom. III. Dimethylsulfoniopropionate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1SrtrjI&md5=92290754a1a51998c34e23d6385bc3cbCAS |

[23]  J. Gunson, S. A. Spall, T. R. Anderson, A. Jones, I. J. Totterdall, M. J. Woodage, Climate sensitivity to ocean dimethylsulphide emissions. Geophys. Res. Lett. 2006, 33, L07701.
Climate sensitivity to ocean dimethylsulphide emissions.Crossref | GoogleScholarGoogle Scholar |